The molecular mechanism of ligand unbinding from the human telomeric G-quadruplex by steered molecular dynamics and umbrella sampling simulations.

نویسندگان

  • Jia-Kai Zhou
  • Dah-Yen Yang
  • Sheh-Yi Sheu
چکیده

G-quadruplexes are attractive drug targets in cancer therapy. Understanding the mechanisms of the binding-unbinding processes involving biomolecules and molecular recognition is essential for designing new drugs of G-quadruplexes. We performed steered molecular dynamics and umbrella sampling simulations to investigate the molecular mechanism and kinetics of ligand unbinding processes of the basket, propeller and hybrid G-quadruplex structures. Our studies of the ligand charge effect showed that Coulomb interaction plays a significant role in stabilizing the G-quadruplex structure in the unbinding process. The free energy profiles were carried out and the free energy changes associated with the unbinding process were computed quantitatively, whereas these results could help to identify accessible binding sites and transient interactions. The dynamics of the hydration shell water molecules around the G-quadruplex exhibits an abnormal Brownian motion, and the thickness and free energy of the hydration shell were estimated. A two-step relaxation scheme was theoretically developed to describe the kinetic reaction of BMVC and G-quadruplex interactions. Our computed results fall in a reasonable range of experimental data. The present investigation could be helpful in the structure-based drug design.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three new scorpion chloride channel toxins as potential anti-cancer drugs: Computational prediction of the interactions with hMMP-2 by docking and Steered Molecular Dynamics Simulations

Scorpion venom is a rich source of toxins which have great potential to develop new therapeutic agents. Scorpion chloride channel toxins (ClTxs), such as Chlorotoxin selectively inhibit human Matrix Methaloproteinase-2 (hMMP-2). The inhibitors of hMMP-2 have potential use in cancer therapy. Three new ClTxs, meuCl14, meuCl15 and meuCl16, derived from the venom transcriptome of Iranian scorpion, ...

متن کامل

Three new scorpion chloride channel toxins as potential anti-cancer drugs: Computational prediction of the interactions with hMMP-2 by docking and Steered Molecular Dynamics Simulations

Scorpion venom is a rich source of toxins which have great potential to develop new therapeutic agents. Scorpion chloride channel toxins (ClTxs), such as Chlorotoxin selectively inhibit human Matrix Methaloproteinase-2 (hMMP-2). The inhibitors of hMMP-2 have potential use in cancer therapy. Three new ClTxs, meuCl14, meuCl15 and meuCl16, derived from the venom transcriptome of Iranian scorpion, ...

متن کامل

Mechanism and energetics of charybdotoxin unbinding from a potassium channel from molecular dynamics simulations.

Ion channel-toxin complexes are ideal systems for computational studies of protein-ligand interactions, because, in most cases, the channel axis provides a natural reaction coordinate for unbinding of a ligand and a wealth of physiological data is available to check the computational results. We use a recently determined structure of a potassium channel-charybdotoxin complex in molecular dynami...

متن کامل

Force-induced unfolding of human telomeric G-quadruplex: a steered molecular dynamics simulation study.

We study the unfolding of a parallel G-quadruplex from human telomeric DNA by mechanical stretching using steered molecular dynamics (MD) simulation. We find that the force curves and unfolding processes strongly depend on the pulling sites. With pulling sites located on the sugar-phosphate backbone, the force-extension curve shows a single peak and the unfolding proceeds sequentially. Pulling ...

متن کامل

Free Energy Calculation from Steered Molecular Dynamics Simulations Using Jarzynski’s Equality

Jarzynski’s equality is applied to free energy calculations from steered molecular dynamics simulations of biomolecules. The helix-coil transition of deca-alanine in vacuum is used as an example. With about ten trajectories sampled, the second order cumulant expansion, among the various averaging schemes examined, yields the most accurate estimates. We compare umbrella sampling and the present ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 19  شماره 

صفحات  -

تاریخ انتشار 2015