Versican/PG-M isoforms in vascular smooth muscle cells.
نویسندگان
چکیده
The expression of increased amounts of proteoglycans in the extracellular matrix may play a role in vascular stenosis and lipid retention. The large chondroitin sulfate proteoglycan versican is synthesized by vascular smooth muscle cells (SMCs), accumulates during human atherosclerosis and restenosis, and has been shown to bind LDLs. We recently demonstrated that adult rat aortic SMCs express several versican mRNAs. Four versican splice variants, V0, V1, V2, and V3, have recently been described, which differ dramatically in length. These variants differ in the extent of modification by glycosaminoglycan chains, and V3 may lack glycosaminoglycan chains. In this study, we characterized versican RNAs from rat SMCs by cloning, sequencing, and hybridization with domain-specific probes. DNA sequence was obtained for the V3 isoform, and for a truncated V0 isoform. By hybridization of polyadenylated RNA with domain-specific probes, we determined that the V0, V1, and V3 isoforms are present in vascular SMCs. We confirmed the presence of the V3 isoform in polyadenylated RNA and in RT-PCR products by hybridization with an oligonucleotide that spans the splice junction between the hyaluronan-binding domain and the epidermal growth factor-like domain. In addition, a novel splice variant was cloned by PCR amplification from both rat and human SMC RNA. This appears to be an incompletely spliced variant, retaining the final intron. PCR analysis shows that this intron can be retained in both V1 and V3 isoforms. The predicted translation product of this variant would have a different carboxy-terminus than previously described versican isoforms.
منابع مشابه
Versican-thrombospondin-1 binding in vitro and colocalization in microfibrils induced by inflammation on vascular smooth muscle cells.
We identified a specific interaction between two secreted proteins, thrombospondin-1 and versican, that is induced during a toll-like receptor-3-dependent inflammatory response in vascular smooth muscle cells. Thrombospondin-1 binding to versican is modulated by divalent cations. This interaction is mediated by interaction of the G1 domain of versican with the N-module of thrombospondin-1 but o...
متن کاملInhibition of versican synthesis by antisense alters smooth muscle cell phenotype and induces elastic fiber formation in vitro and in neointima after vessel injury.
The proteoglycan versican is implicated in several atherogenic events, including stimulation of vascular smooth muscle cell (VSMC) growth and migration, retention of lipoproteins, and promotion of thrombogenesis. A high content of intimal versican also correlates with a low content of elastin, suggesting an inhibitory role for versican in elastogenesis. To determine whether reduced production o...
متن کاملHuman coronary smooth muscle cells internalize versican-modified LDL through LDL receptor-related protein and LDL receptors.
Versican-like proteoglycans are the main component of the intimal extracellular matrix interacting with low density lipoprotein (LDL). The aim of this study has been to investigate the receptors involved in versican-modified LDL uptake by human vascular smooth muscle cells (VSMCs). We have found that versican-LDL interaction leads to the following: (1) monomeric LDL particles that are similar i...
متن کاملThe role of autophagy in advanced glycation end product-induced proliferation and migration in rat vascular smooth muscle cells
Objective(s): To investigate the role of autophagy in advanced glycation end products (AGEs)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs).Materials and Methods: After culture, VSMCs were treated with 0, 1, 10, and 100 μg/ml concentrations of AGEs. Autophagy specific protein light chain 3 (LC3)-I/II was determined by western blotting, autophagosomes were observ...
متن کاملHeparan sulfate proteoglycans mediate a potent inhibitory signal for migration of vascular smooth muscle cells.
Migration of vascular smooth muscle cells (SMCs) is a key step in vascular remodeling and formation of pathological lesions in diseased arteries and may be controlled by extracellular matrix (ECM) and by factors that regulate ECM composition, such as platelet-derived growth factor (PDGF). In culture, PDGF-AB and -BB enhance but PDGF-AA (although having no effect alone) suppresses SMC migration ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 19 7 شماره
صفحات -
تاریخ انتشار 1999