A priori error estimates to smooth solutions of the third order Runge-Kutta discontinuous Galerkin method for symmetrizable systems of conservation laws

نویسندگان

  • Juan Luo
  • Chi-Wang Shu
  • Qiang Zhang
چکیده

In this paper we present an a priori error estimate of the Runge-Kutta discontinuous Galerkin method for solving symmetrizable conservation laws, where the time is discretized with the third order explicit total variation diminishing Runge-Kutta method and the finite element space is made up of piecewise polynomials of degree k ≥ 2. Quasi-optimal error estimate is obtained by energy techniques, for the so-called generalized E-fluxes under the standard temporal-spatial CFL condition τ ≤ γh, where h is the element length and τ is time step, and γ is a positive constant independent of h and τ . Optimal estimates are also considered when the upwind numerical flux is used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability Analysis and A Priori Error Estimates of the Third Order Explicit Runge-Kutta Discontinuous Galerkin Method for Scalar Conservation Laws

In this paper we present the analysis for the Runge-Kutta discontinuous Galerkin (RKDG) method to solve scalar conservation laws, where the time discretization is the third order explicit total variation diminishing Runge–Kutta (TVDRK3) method. We use an energy technique to present the L-norm stability for scalar linear conservation laws, and obtain a priori error estimates for smooth solutions...

متن کامل

Stability analysis and a priori error estimate of explicit Runge-Kutta discontinuous Galerkin methods for correlated random walk with density-dependent turning rates

Abstract In this paper we analyze the explicit Runge-Kutta discontinuous Galerkin (RKDG) methods for the semilinear hyperbolic system of a correlated random walk model describing movement of animals and cells in biology. The RKDG methods use a third order explicit total-variation-diminishing Runge-Kutta (TVDRK3) time discretization and upwinding numerical fluxes. By using the energy method, und...

متن کامل

A Priori Error Estimates for Semi-discrete Discontinuous Galerkin Methods Solving Nonlinear Hamilton-jacobi Equations with Smooth Solutions

The Hamiltonian H is assumed to be a smooth function of all the arguments. When there is no ambiguity, we also take the concise notation H(φx) = H(φx, x) and H(φx, φy) = H(φx, φy, x, y). The DG method is a class of finite element methods using completely discontinuous piecewise polynomial space for the numerical solution in the spatial variables. It can be discretized in time by the explicit an...

متن کامل

Numerical smoothness and error analysis for RKDG on the scalar nonlinear conservation laws

The new concept of numerical smoothness is applied to the RKDG (Runge-Kutta/Discontinuous Galerkin) methods for scalar nonlinear conservations laws. The main result is an a posteriori error estimate for the RKDG methods of arbitrary order in space and time, with optimal convergence rate. In this paper, the case of smooth solutions is the focus point. However, the error analysis framework is pre...

متن کامل

Numerical Solutions of Euler Equations by Runge-kutta Discontinuous Galerkin Method

Runge-Kutta discontinuous Galerkin (RKDG) method is a high order finite element method for solving hyperbolic conservation laws employing useful features from high resolution finite volume schemes, such as the exact or approximate Riemann solvers serving as numerical fluxes, TVD Runge-Kutta time discretizations and limiters. In most of the RKDG papers in the literature, the LaxFriedrichs numeri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013