Evaluation of deuterated 18F- and 11C-labeled choline analogs for cancer detection by positron emission tomography.

نویسندگان

  • Timothy H Witney
  • Israt S Alam
  • David R Turton
  • Graham Smith
  • Laurence Carroll
  • Diana Brickute
  • Frazer J Twyman
  • Quang-Dé Nguyen
  • Giampaolo Tomasi
  • Ramla O Awais
  • Eric O Aboagye
چکیده

PURPOSE (11)C-Choline-positron emission tomography (PET) has been exploited to detect the aberrant choline metabolism in tumors. Radiolabeled choline uptake within the imaging time is primarily a function of transport, phosphorylation, and oxidation. Rapid choline oxidation, however, complicates interpretation of PET data. In this study, we investigated the biologic basis of the oxidation of deuterated choline analogs and assessed their specificity in human tumor xenografts. EXPERIMENTAL DESIGN (11)C-Choline, (11)C-methyl-[1,2-(2)H(4)]-choline ((11)C-D4-choline), and (18)F-D4-choline were synthesized to permit comparison. Biodistribution, metabolism, small-animal PET studies, and kinetic analysis of tracer uptake were carried out in human colon HCT116 xenograft-bearing mice. RESULTS Oxidation of choline analogs to betaine was highest with (11)C-choline, with reduced oxidation observed with (11)C-D4-choline and substantially reduced with (18)F-D4-choline, suggesting that both fluorination and deuteration were important for tracer metabolism. Although all tracers were converted intracellularly to labeled phosphocholine (specific signal), the higher rate constants for intracellular retention (K(i) and k(3)) of (11)C-choline and (11)C-D4-choline, compared with (18)F-D4-choline, were explained by the rapid conversion of the nonfluorinated tracers to betaine within HCT116 tumors. Imaging studies showed that the uptake of (18)F-D4-choline in three tumors with similar radiotracer delivery (K(1)) and choline kinase α expression-HCT116, A375, and PC3-M-were the same, suggesting that (18)F-D4-choline has utility for cancer detection irrespective of histologic type. CONCLUSION We have shown here that both deuteration and fluorination combine to provide protection against choline oxidation in vivo. (18)F-D4-choline showed the highest selectivity for phosphorylation and warrants clinical evaluation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C-11 Choline and FDG PET/CT Imaging of Primary Cholangiocarcinoma – a Comparative Analysis

Objective(s): This study aimed to compare the diagnostic values of 11C-choline and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) in patients with cholangiocarcinoma (CCA). Methods: This prospective study was conducted on 10 patients (6 males and 4 females), aged 42-69 years, suspected of having CCA based on CT or magnetic resonance imaging (MRI) resu...

متن کامل

11C-Choline-Avid but 18F-FDG-Nonavid Prostate Cancer with Lymph Node Metastases on Positron Emission Tomography

Choline is a new positron emission tomography (PET) tracer useful for detection of prostate cancer and metastatic lesions. We report a 70-year-old man with prostate cancer and multiple abdominal, pelvic, and inguinal node metastases. PET scans demonstrated accumulation of 11C-choline in the primary tumor and lymph node metastases but no accumulation of 18F-FDG. Choline PET/computed tomography m...

متن کامل

Choline PET/CT Imaging for Management of Prostate Cancer

Whole-body Positron Emission Tomography/Computed Tomography (PET/CT) with [11C]and [18F]-labeled choline derivatives has emerged as a promising molecular imaging modality for evaluation of prostate cancer. 11C-choline and 18F-flurocholine PET/CT examinations have been shown to be effective for restaging of prostate cancer patients with biochemical disease recurrence after undergoing definitive ...

متن کامل

Evaluation of androgen-induced effects on the uptake of [18F]FDG, [11C]choline and [11C]acetate in an androgen-sensitive and androgen-independent prostate cancer xenograft model

BACKGROUND Androgen deprivation (AD) is generally used as a first-line palliative treatment in prostate cancer (PCa) patients with rising prostate-specific antigen (PSA) after primary therapy. To acquire an accurate detection of tumour viability following AD with positron emission tomography (PET), an androgen-independent uptake of tracers would be advantageous. Several metabolic PET tracers ar...

متن کامل

Prostate cancer: PET with 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline.

Prostate cancer is biologically and clinically a heterogeneous disease that makes imaging evaluation challenging. The role of imaging in prostate cancer should include diagnosis, localization, and characterization (indolent vs. lethal) of the primary tumor, determination of extracapsular spread, guidance and evaluation of local therapy in organ-confined disease, staging of locoregional lymph no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 18 4  شماره 

صفحات  -

تاریخ انتشار 2012