N-Acylethanolamine metabolism interacts with abscisic acid signaling in Arabidopsis thaliana seedlings.

نویسندگان

  • Neal D Teaster
  • Christy M Motes
  • Yuhong Tang
  • William C Wiant
  • Matthew Q Cotter
  • Yuh-Shuh Wang
  • Aruna Kilaru
  • Barney J Venables
  • Karl H Hasenstein
  • Gabriel Gonzalez
  • Elison B Blancaflor
  • Kent D Chapman
چکیده

N-Acylethanolamines (NAEs) are bioactive acylamides that are present in a wide range of organisms. In plants, NAEs are generally elevated in desiccated seeds, suggesting that they may play a role in seed physiology. NAE and abscisic acid (ABA) levels were depleted during seed germination, and both metabolites inhibited the growth of Arabidopsis thaliana seedlings within a similar developmental window. Combined application of low levels of ABA and NAE produced a more dramatic reduction in germination and growth than either compound alone. Transcript profiling and gene expression studies in NAE-treated seedlings revealed elevated transcripts for a number of ABA-responsive genes and genes typically enriched in desiccated seeds. The levels of ABI3 transcripts were inversely associated with NAE-modulated growth. Overexpression of the Arabidopsis NAE degrading enzyme fatty acid amide hydrolase resulted in seedlings that were hypersensitive to ABA, whereas the ABA-insensitive mutants, abi1-1, abi2-1, and abi3-1, exhibited reduced sensitivity to NAE. Collectively, our data indicate that an intact ABA signaling pathway is required for NAE action and that NAE may intersect the ABA pathway downstream from ABA. We propose that NAE metabolism interacts with ABA in the negative regulation of seedling development and that normal seedling establishment depends on the reduction of the endogenous levels of both metabolites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light-mediated photomorphogenic growth.

The crosstalk of light signaling pathways with other signaling cascades has just started to be revealed. Here, we report the identification and functional characterization of a Z-box binding factor (ZBF1) in light signaling pathways. Arabidopsis thaliana ZBF1 encodes AtMYC2/JIN1, a basic helix-loop-helix transcription factor, which has recently been shown to be involved in abscisic acid (ABA), ...

متن کامل

KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling.

Analysis of the Arabidopsis thaliana RING-ANK (for Really Interesting New Gene-Ankyrin) family, a subgroup of RING-type E3 ligases, identified KEEP ON GOING (KEG) as essential for growth and development. In addition to the RING-HCa and ankyrin repeats, KEG contains a kinase domain and 12 HERC2-like repeats. The RING-HCa and kinase domains were functional in in vitro ubiquitylation and phosphory...

متن کامل

ABI4 activates DGAT1 expression in Arabidopsis seedlings during nitrogen deficiency.

Triacylglycerol (TAG) is the major seed storage lipid and is important for biofuel and other renewable chemical uses. Acyl-coenzyme A:diacylglycerol acyltransferase1 (DGAT1) is the rate-limiting enzyme in the TAG biosynthesis pathway, but the mechanism of its regulation is unknown. Here, we show that TAG accumulation in Arabidopsis (Arabidopsis thaliana) seedlings increased significantly during...

متن کامل

ABD1 is an Arabidopsis DCAF substrate receptor for CUL4-DDB1-based E3 ligases that acts as a negative regulator of abscisic acid signaling.

Members of the DDB1-CUL4-associated factors (DCAFs) family directly bind to DAMAGED DNA BINDING PROTEIN1 (DDB1) and function as the substrate receptors in CULLIN4-based E3 (CUL4) ubiquitin ligases, which regulate the selective ubiquitination of proteins. Here, we describe a DCAF protein, ABD1 (for ABA-hypersensitive DCAF1), that negatively regulates abscisic acid (ABA) signaling in Arabidopsis ...

متن کامل

Signaling Role of Fructose Mediated by FINS1/FBP in Arabidopsis thaliana

Sugars are evolutionarily conserved signaling molecules that regulate the growth and development of both unicellular and multicellular organisms. As sugar-producing photosynthetic organisms, plants utilize glucose as one of their major signaling molecules. However, the details of other sugar signaling molecules and their regulatory factors have remained elusive, due to the complexity of the met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 19 8  شماره 

صفحات  -

تاریخ انتشار 2007