Convergence and Divergence of Series Conjugate to a Convergent Multiple Fourier Series by J. Marshall Ash(1) and Lawrence Gluck

نویسنده

  • L. GLUCK
چکیده

In this note we consider to what extent the classical theorems of Plessner and Kuttner comparing the set of convergence of a trigonometric series with that of the conjugate trigonometric series can be generalized to higher dimensions. We show that if a function belongs to LP, p > 1, of the 2-torus, then the convergence (unrestricted rectangular convergence) of the Fourier series on a set implies its three conjugate functions converge almost everywhere on that set. That this theorem approaches the best possible may be seen from two examples which show that the dimension may not be increased to 3, nor the required power of integrability be decreased to 1. We also construct a continuous function having a boundedly divergent Fourier series of power series type and an a.e. circularly convergent double Fourier series whose y-conjugate diverges circularly a.e. Our LP result depends on a theorem of L. Gogoladze (our proof is included for the reader's convenience), work of J. M. Ash and G. Welland on (C, 1, 0) summability, and on a result deducing the boundedness of certain partial linear means from convergence of those partial means. The construction of the counterexamples utilizes examples given by C. Fefferman, J. Marcinkiewicz, A. Zygmund, D. Mensov, and the present authors' earlier work.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniqueness for spherically convergent multiple trigonometric series

In 1870 Cantor proved that representation of a function of one variable by a trigonometric series can be done in only one way. In 1996 Bourgain proved the same thing for spherical convergence and multiple trigonometric series. His proof involves injecting a lot of new ideas into the theory of uniqueness. We give here an exposition of Bourgain’s proof, specialized to the case of dimension 2. Our...

متن کامل

A Survey of Uniqueness Questions in Multiple Trigonometric Series

The issue is uniqueness of representation by multiple trigonometric series. Two basic uniqueness questions, one about series which converge to zero and the other about series which converge to an integrable function, are asked for each of four modes of convergence: unrestricted rectangular convergence, spherical convergence, square convergence, and restricted rectangular convergence. Thus there...

متن کامل

Reopening the Convergence Debate when Sharp Breaks and Smooth Shifts Wed, 1870-2010

Abstract This paper attempts to re-investigate the catching-up (stochastic convergence) hypothesis among the selected 16 OECD countries applying the time series approach of convergence hypothesis with annual data over one century. To reach this aim, we propose a model which specifies a trend function, incorporating both types of structural breaks – that is, sharp breaks and smooth shifts usin...

متن کامل

A Class of Convergent Series with Golden Ratio Based on Fibonacci Sequence

In this article, a class of convergent series based on Fibonacci sequence is introduced for which there is a golden ratio (i.e. $frac{1+sqrt 5}{2}),$ with respect to convergence analysis. A class of sequences are at first built using two consecutive numbers of Fibonacci sequence and, therefore,  new sequences have been used in order  to introduce a  new class of series. All properties of the se...

متن کامل

Uniqueness for multiple trigonometric and Walsh series with convergent rearranged square partial sums

If at each point of a set of positive Lebesgue measure, every rearrangement of a multiple trigonometric series square converges to a finite value, then that series is the Fourier series of a function to which it converges uniformly. If there is at least one point at which every rearrangement of a multiple Walsh series square converges to a finite value, then that series is the Walsh-Fourier ser...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008