Simultaneous Avoidance Of Generalized Patterns

نویسندگان

  • Sergey Kitaev
  • Toufik Mansour
چکیده

In [BabStein] Babson and Steingŕımsson introduced generalized permutation patterns that allow the requirement that two adjacent letters in a pattern must be adjacent in the permutation. In [Kit1] Kitaev considered simultaneous avoidance (multi-avoidance) of two or more 3-patterns with no internal dashes, that is, where the patterns correspond to contiguous subwords in a permutation. There either an explicit or a recursive formula was given for all but one case of simultaneous avoidance of more than two patterns. In this paper we find the exponential generating function for the remaining case. Also we consider permutations that avoid a pattern of the form x−yz or xy − z and begin with one of the patterns 12 . . . k, k(k − 1) . . . 1, 23 . . . k1, (k − 1)(k − 2) . . . 1k or end with one of the patterns 12 . . . k, k(k − 1) . . . 1, 1k(k − 1) . . . 2, k12 . . . (k − 1). For each of these cases we find either the ordinary or exponential generating functions or a precise formula for the number of such permutations. Besides we generalize some of the obtained results as well as some of the results given in [Kit3]: we consider permutations avoiding certain generalized 3-patterns and beginning (ending) with an arbitrary pattern having either the greatest or the least letter as its rightmost (leftmost) letter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous Avoidance of Generalized Patterns Sergey Kitaev and Toufik Mansour

In [BabStein] Babson and Steingŕımsson introduced generalized permutation patterns that allow the requirement that two adjacent letters in a pattern must be adjacent in the permutation. In [Kit1] Kitaev considered simultaneous avoidance (multi-avoidance) of two or more 3-patterns with no internal dashes, that is, where the patterns correspond to contiguous subwords in a permutation. There eithe...

متن کامل

Multiple Pattern Avoidance with respect to Fixed Points and Excedances

We study the distribution of the statistics ‘number of fixed points’ and ‘number of excedances’ in permutations avoiding subsets of patterns of length 3. We solve all the cases of simultaneous avoidance of more than one pattern, giving generating functions enumerating these two statistics. Some cases are generalized to patterns of arbitrary length. For avoidance of one single pattern we give pa...

متن کامل

On Multi-avoidance of Generalized Patterns Sergey Kitaev and Toufik Mansour

In [Kit1] Kitaev discussed simultaneous avoidance of two 3-patterns with no internal dashes, that is, where the patterns correspond to contiguous subwords in a permutation. In three essentially different cases, the numbers of such n-permutations are 2, the number of involutions in Sn, and 2En, where En is the n-th Euler number. In this paper we give recurrence relations for the remaining three ...

متن کامل

On multi-avoidance of generalized patterns

In [Kit1] Kitaev discussed simultaneous avoidance of two 3-patterns with no internal dashes, that is, where the patterns correspond to contiguous subwords in a permutation. In three essentially different cases, the numbers of such n-permutations are 2n−1, the number of involutions in Sn, and 2En, where En is the n-th Euler number. In this paper we give recurrence relations for the remaining thr...

متن کامل

AVOIDANCE OF PARTIALLY ORDERED PATTERNS OF THE FORM k-σ-k

Sergey Kitaev [4] has shown that the exponential generating function for permutations avoiding the generalized pattern σ-k, where σ is a pattern without dashes and k is one greater than the largest element in σ, is determined by the exponential generating function for permutations avoiding σ. We show that the exponential generating function for permutations avoiding the partially ordered patter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ars Comb.

دوره 75  شماره 

صفحات  -

تاریخ انتشار 2005