A single domain antibody fragment that recognizes the adaptor ASC defines the role of ASC domains in inflammasome assembly
نویسندگان
چکیده
Myeloid cells assemble inflammasomes in response to infection or cell damage; cytosolic sensors activate pro-caspase-1, indirectly for the most part, via the adaptors ASC and NLRC4. This leads to secretion of proinflammatory cytokines and pyroptosis. To explore complex formation under physiological conditions, we generated an alpaca single domain antibody, VHHASC, which specifically recognizes the CARD of human ASC via its type II interface. VHHASC not only impairs ASC(CARD) interactions in vitro, but also inhibits inflammasome activation in response to NLRP3, AIM2, and NAIP triggers when expressed in living cells, highlighting a role of ASC in all three types of inflammasomes. VHHASC leaves the Pyrin domain of ASC functional and stabilizes a filamentous intermediate of inflammasome activation. Incorporation of VHHASC-EGFP into these structures allowed the visualization of endogenous ASC(PYD) filaments for the first time. These data revealed that cross-linking of ASC(PYD) filaments via ASC(CARD) mediates the assembly of ASC foci.
منابع مشابه
Structural mechanisms of inflammasome assembly.
Inflammasomes are supramolecular signaling complexes that activate a subset of caspases known as the inflammatory caspases, an example of which is caspase 1. Upon stimulation by microbial and damage-associated signals, inflammasomes assemble to elicit the first line of host defense via the proteolytic maturation of cytokines interleukin-1β and interleukin-18, and by induction of pyroptotic cell...
متن کاملMultiple binding sites on the ASC pyrin domain allow self-association and interaction with NLRP3
Background: Pyrin domains (PYDs) mediate the assembly of inflammasome complexes, but PYD interaction modes are not well characterised. Results: Interaction sites were identified on the PYD of the inflammasome adaptor protein, ASC. Conclusion: ASC PYD has multiple binding sites allowing self-association and interaction with binding partners. Significance: Understanding molecular details of infla...
متن کاملUnified Polymerization Mechanism for the Assembly of ASC-Dependent Inflammasomes
Inflammasomes elicit host defense inside cells by activating caspase-1 for cytokine maturation and cell death. AIM2 and NLRP3 are representative sensor proteins in two major families of inflammasomes. The adaptor protein ASC bridges the sensor proteins and caspase-1 to form ternary inflammasome complexes, achieved through pyrin domain (PYD) interactions between sensors and ASC and through caspa...
متن کاملMultiple binding sites on the pyrin domain of ASC protein allow self-association and interaction with NLRP3 protein.
A key process underlying an innate immune response to pathogens or cellular stress is activation of members of the NOD-like receptor family, such as NLRP3, to assemble caspase-1-activating inflammasome complexes. Activated caspase-1 processes proinflammatory cytokines into active forms that mediate inflammation. Activation of the NLRP3 inflammasome is also associated with common diseases includ...
متن کاملThe Inflammasome Adaptor ASC Induces Procaspase-8 Death Effector Domain Filaments.
Inflammasomes mediate inflammatory and cell death responses to pathogens and cellular stress signals via activation of procaspases-1 and -8. During inflammasome assembly, activated receptors of the NLR or PYHIN family recruit the adaptor protein ASC and initiate polymerization of its pyrin domain (PYD) into filaments. We show that ASC filaments in turn nucleate procaspase-8 death effector domai...
متن کامل