Synthesis Methods of Two-Dimensional MoS2: A Brief Review
نویسندگان
چکیده
Molybdenum disulfide (MoS2) is one of the most important two-dimensional materials after graphene. Monolayer MoS2 has a direct bandgap (1.9 eV) and is potentially suitable for post-silicon electronics. Among all atomically thin semiconductors, MoS2’s synthesis techniques are more developed. Here, we review the recent developments in the synthesis of hexagonal MoS2, where they are categorized into top-down and bottom-up approaches. Micromechanical exfoliation is convenient for beginners and basic research. Liquid phase exfoliation and solutions for chemical processes are cheap and suitable for large-scale production; yielding materials mostly in powders with different shapes, sizes and layer numbers. MoS2 films on a substrate targeting high-end nanoelectronic applications can be produced by chemical vapor deposition, compatible with the semiconductor industry. Usually, metal catalysts are unnecessary. Unlike graphene, the transfer of atomic layers is omitted. We especially emphasize the recent advances in metalorganic chemical vapor deposition and atomic layer deposition, where gaseous precursors are used. These processes grow MoS2 with the smallest building-blocks, naturally promising higher quality and controllability. Most likely, this will be an important direction in the field. Nevertheless, today none of those methods reproducibly produces MoS2 with competitive quality. There is a long way to go for MoS2 in real-life electronic device applications.
منابع مشابه
Properties, Application and Synthesis Methods of boron nitride Powder: A Review
h-BN is a multipurpose ceramic material, with exceptional properties and a wide area of application in industry. It is structurally similar to graphite and it resists oxidation to higher temperatures than graphite. It is used in powder form as a mold release agent in metal casting, as a high temperature lubricant or even in cosmetics. hBN can be shaped by hot-pressing and is used as molds or cr...
متن کاملBiological Applications of Bacterial Nano-Surface Layers : A Brief Overview
Surface layer as the outer protective coverage of bacteria and archaea are two-dimensional crystalline and symmetrical arrays of proteins that recently attract a lot of attention for biologist scientists. The surface layers of bacteria are usually 5 to 10 nm in diameter and represent highly porous protein lattices with uniform size and morphology with the pore sizes of 2 to 8 nm. The crucial an...
متن کاملOne-dimensional metallic edge states in MoS2.
By the use of density functional calculations it is shown that the edges of a two-dimensional slab of insulating MoS2 exhibit several metallic states. These edge states can be viewed as one-dimensional conducting wires, and we show that they can be observed directly using scanning tunneling microscopy for single-layer MoS2 nanoparticles grown on a support.
متن کاملDirect TEM observations of growth mechanisms of two-dimensional MoS2 flakes
A microscopic understanding of the growth mechanism of two-dimensional materials is of particular importance for controllable synthesis of functional nanostructures. Because of the lack of direct and insightful observations, how to control the orientation and the size of two-dimensional material grains is still under debate. Here we discern distinct formation stages for MoS2 flakes from the the...
متن کاملA high-quality round-shaped monolayer MoS2 domain and its transformation.
MoS2 is widely used in many fields including spin-valleytronics, logic transistors, light emitting devices, clean energy and biology. However, controllable synthesis of two-dimensional MoS2 sheets remains a great challenge. We report the formation of round-shaped monolayer MoS2 domains with a tunable size and the shape transformation from triangle to round. A qualitative interpretation of the f...
متن کامل