Electrochemical biosensing based on universal affinity biocomposite platforms.

نویسندگان

  • E Zacco
  • M I Pividori
  • S Alegret
چکیده

Rigid conducting biocomposites are versatile and effective transducing materials for the construction of a wide range of amperometric biosensors such as immunosensors, genosensors and enzymosensors, particularly if the transducer is bulk-modified with universal affinity biomolecules. The strept(avidin)-graphite-epoxy biocomposite could be considered as an universal immobilization platform whereon biotinylated DNAs, oligonucleotides, enzymes or antibodies can be captured by means of the highly affinity (strept)avidin-biotin reaction. Universal affinity biocomposite-based biosensors offer many potential advantages compared to more traditional electrochemical biosensors commonly based on a biologically surface-modified transducer. The integration of many materials into one matrix is their main advantage. As biological bulk-modified materials, the conducting biocomposites act not only as transducers, but also as reservoir for the biomaterial. After its use, the electrode surface can be renewed by a simple polishing procedure, establishing a clear advantage of these approaches relative to classical biosensors and other common biological assays. Moreover, the same material is useful for the analysis of many molecules whose determinations are based on genetic, enzymatic or immunological reactions. The different strategies for electrochemical genosensing, immunosensing and enzymosensing, all of them being dependent on the presence of a redox enzyme marker for the generation of the electrochemical signal, based on this universal affinity biocomposite platform are all presented and discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Particles Coupled to Disposable Screen Printed Transducers for Electrochemical Biosensing

Ultrasensitive biosensing is currently a growing demand that has led to the development of numerous strategies for signal amplification. In this context, the unique properties of magnetic particles; both of nano- and micro-size dimensions; have proved to be promising materials to be coupled with disposable electrodes for the design of cost-effective electrochemical affinity biosensing platforms...

متن کامل

Diagnostics Strategies with Electrochemical Affinity Biosensors Using Carbon Nanomaterials as Electrode Modifiers

Early diagnosis is often the key to successful patient treatment and survival. The identification of various disease signaling biomarkers which reliably reflect normal and disease states in humans in biological fluids explain the burgeoning research field in developing new methodologies able to determine the target biomarkers in complex biological samples with the required sensitivity and selec...

متن کامل

Carbon Nanostructures for Tagging in Electrochemical Biosensing: A Review

Growing demand for developing ultrasensitive electrochemical bioassays has led to the design of numerous signal amplification strategies. In this context, carbon-based nanomaterials have been demonstrated to be excellent tags for greatly amplifying the transduction of recognition events and simplifying the protocols used in electrochemical biosensing. This relevant role is due to the carbon-nan...

متن کامل

Protein-Based Graphene Biosensors: Optimizing Artificial Chemoreception in Bilayer Lipid Membranes

Proteinaceous moieties are critical elements in most detection systems, including biosensing platforms. Their potential is undoubtedly vast, yet many issues regarding their full exploitation remain unsolved. On the other hand, the biosensor formats with the higher marketability probabilities are enzyme in nature and electrochemical in concept. To no surprise, alternative materials for hosting c...

متن کامل

Title: Biosensing at Disk Microelectrode Arrays. Inter-electrode Functionalization Allows Formatting into Miniaturised Sensing Platforms of Enhanced Sensitivity Biosensing at Disk Microelectrode Arrays. Inter-electrode Functionalization Allows Formatting into Miniaturised Sensing Platforms of Enhanced Sensitivity

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biosensors & bioelectronics

دوره 21 7  شماره 

صفحات  -

تاریخ انتشار 2006