On uncertainty principle of the local polynomial Fourier transform

نویسندگان

  • Xiumei Li
  • Guoan Bi
  • Shenghong Li
چکیده

In this article, a comprehensive study on uncertainty principle of the local polynomial Fourier transform (LPFT) is presented. It shows that the uncertainty product of the LPFT of an arbitrary order is related to the parameters of the signal and the window function, in addition to the errors of estimating the polynomial coefficients. Important factors that affect resolutions of signal representation, such as the window width, the length of overlap between signal segments, order mismatch and estimation errors of polynomial coefficients, are discussed. The effects of minimizing computational complexities on signal representation by reducing the order of the transform and the overlap length between signal segments are also examined. In terms of the signal concentration, comparisons among the short-time Fourier transform, the Wigner-Ville distribution and the second order LPFT are presented. The LPFT is shown to be an excellent candidate providing better representations for time-varying signals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Systematic analysis of uncertainty principles of the local polynomial Fourier transform

In this paper, we show that there are a number of uncertainty principles for the local polynomial Fourier transform and local polynomial periodogram. Systematic analysis of uncertainty principles is given, explicit expressions of the uncertainty relations are derived, and an example using the chirp signal and the Gaussian window function is given to verify the expressions.

متن کامل

An Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator

The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.

متن کامل

On the Duality of Regular and Local Functions

In this paper, we relate Poisson’s summation formula to Heisenberg’s uncertainty 1 principle. They both express Fourier dualities within the space of tempered distributions and 2 these dualities are furthermore the inverses of one another. While Poisson’s summation 3 formula expresses a duality between discretization and periodization, Heisenberg’s 4 uncertainty principle expresses a duality be...

متن کامل

ISAR Image Improvement Using STFT Kernel Width Optimization Based On Minimum Entropy Criterion

Nowadays, Radar systems have many applications and radar imaging is one of the most important of these applications. Inverse Synthetic Aperture Radar (ISAR) is used to form an image from moving targets. Conventional methods use Fourier transform to retrieve Doppler information. However, because of maneuvering of the target, the Doppler spectrum becomes time-varying and the image is blurred. Joi...

متن کامل

The Uncertainty Principle for Fourier Transforms on the Real Line

This paper will explore the heuristic principle that a function on the line and its Fourier transform cannot both be concentrated on small sets. We begin with the basic properties of the Fourier transform and show that a function and its Fourier transform cannot both have compact support. From there we prove the Fourier inversion theorem and use this to prove the classical uncertainty principle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012