Norepinephrine inhibits calcium currents and EPSPs via a G-protein-coupled mechanism in olfactory bulb neurons.

نویسنده

  • P Q Trombley
چکیده

The most pronounced effect of norepinephrine (NE) in the olfactory bulb is disinhibition of mitral/tufted (M/T) cells. Although it has been previously proposed that the effects of NE are mediated by a direct inhibitory action on granule cells, we have demonstrated that NE could exert it effects through inhibition of excitatory synaptic transmission from M/T cells to granule cells (Trombley and Shepherd, 1992). In order to define further the mechanism underlying NE-mediated inhibition of synaptic transmission, the effects of NE on calcium channel currents were examined using whole-cell recording techniques on bulb neurons in primary culture. NE inhibited high-threshold calcium currents at concentrations that were effective in reducing synaptic transmission. Clonidine, but not isoproterenol, mimicked the effects of NE on calcium currents, suggesting that the effects were mediated through activation of presynaptic alpha-adrenergic receptors. The effects of NE on calcium currents were irreversible in the presence of internal GTP-gamma S and prevented by preincubation with pertussis toxin, results that are consistent with a G-protein-coupled mechanism. Preincubation with pertussis toxin also prevented the effects of NE on synaptic transmission, suggesting that a similar G-protein couple mechanism mediates both effects. Intracellular dialysis with staurosporin or calcium buffering with EGTA did not prevent the effects of NE, suggesting that neither protein phosphorylation nor elevated intracellular calcium were required. These results suggest that NE may inhibit synaptic transmission in the olfactory bulb by reducing calcium currents via a G-protein-coupled alpha-adrenergic receptor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L-AP4 inhibits calcium currents and synaptic transmission via a G-protein-coupled glutamate receptor.

The AP4 (2-amino-4-phosphonobutyrate) receptor is a presynaptic glutamate receptor that inhibits transmitter release via an unknown mechanism. We examined the action of L-AP4 on voltage-dependent calcium currents and excitatory synaptic transmission on cultured olfactory bulb neurons using whole-cell voltage-clamp methods. In neurons dialyzed with GTP, L-AP4 inhibited high-threshold calcium cur...

متن کامل

Dopamine modulates synaptic transmission between rat olfactory bulb neurons in culture.

The glomerular layer of the olfactory bulb (OB) contains synaptic connections between olfactory sensory neurons and OB neurons as well as connections among OB neurons. A subpopulation of external tufted cells and periglomerular cells (juxtaglomerular neurons) expresses dopamine, and recent reports suggest that dopamine can inhibit olfactory sensory neuron activation of OB neurons. In this study...

متن کامل

Noradrenergic inhibition of synaptic transmission between mitral and granule cells in mammalian olfactory bulb cultures.

Noradrenergic modulation of the glutamatergic-GABAergic synapses between mitral/tufted (M/T) and granule cells has been implicated in some forms of olfactory learning (Brennan et al., 1990). Norepinephrine (NE) has been shown to disinhibit mitral cells (Jahr and Nicoll, 1982), but its site of action is not well defined. The effects of NE on synaptic transmission between monosynaptically coupled...

متن کامل

Noradrenergic modulation of calcium currents and synaptic transmission in the olfactory bulb of Xenopus laevis tadpoles.

Norepinephrine (NE) has various modulatory roles in both the peripheral and the central nervous systems. Here we investigate the function of the locus coeruleus efferent fibres in the olfactory bulb of Xenopus laevis tadpoles. In order to distinguish unambiguously between mitral cells and granule cells of the main olfactory bulb and the accessory olfactory bulb, we used a slice preparation. The...

متن کامل

Activation of purinergic receptor subtypes modulates odor sensitivity.

Purinergic nucleotides, including ATP and adenosine, are important neuromodulators of peripheral auditory and visual sensory systems (Thorne and Housley, 1996). ATP released by the olfactory epithelium (OE) after noxious stimuli provides a physiological source for a neuromodulatory substance independent of efferent innervation. Here we show that multiple subtypes of purinergic receptors are dif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 12 10  شماره 

صفحات  -

تاریخ انتشار 1992