Definability in substructure orderings, III: finite distributive lattices
نویسندگان
چکیده
Let D be the ordered set of isomorphism types of finite distributive lattices, where the ordering is by embeddability. We study first-order definability in this ordered set. We prove among other things that for every finite distributive lattice D, the set {d, d} is definable, where d and d are the isomorphism types of D and its opposite (D turned upside down). We prove that the only non-identity automorphism of D is the opposite map. Then we apply these results to investigate definability in the closely related lattice of universal classes of distributive lattices. We prove that this lattice has only one nonidentity automorphism, the opposite map; that the set of finitely generated and also the set of finitely axiomatizable universal classes are definable subsets of the lattice; and that for each element K of the two subsets, {K,K} is a definable subset of the lattice.
منابع مشابه
Definability in substructure orderings, IV: finite lattices
Let L be the ordered set of isomorphism types of finite lattices, where the ordering is by embeddability. We study first-order definability in this ordered set. Our main result is that for every finite lattice L, the set {l, l} is definable, where l and l are the isomorphism types of L and its opposite (L turned upside down). We shall show that the only non-identity automorphism of L is the map...
متن کاملDefinability in substructure orderings, I: finite semilattices
We investigate definability in the set of isomorphism types of finite semilattices ordered by embeddability; we prove, among other things, that every finite semilattice is a definable element in this ordered set. Then we apply these results to investigate definability in the closely related lattice of universal classes of semilattices; we prove that the lattice has no non-identical automorphism...
متن کاملFUZZY ORDERED SETS AND DUALITY FOR FINITE FUZZY DISTRIBUTIVE LATTICES
The starting point of this paper is given by Priestley’s papers, where a theory of representation of distributive lattices is presented. The purpose of this paper is to develop a representation theory of fuzzy distributive lattices in the finite case. In this way, some results of Priestley’s papers are extended. In the main theorem, we show that the category of finite fuzzy Priestley space...
متن کاملInfinite substructure lattices of models of Peano Arithmetic
Some new finite lattices (for example, A/4 , M7, and the hexagon lattice) are shown to be isomorphic to the lattice of elementary substructures of a model of Peano Arithmetic. The set of elementary substructures of a model JV of Peano Arithmetic forms a lattice Lt(yf), the substructure lattice of jV. It is unknown whether there are finite lattices that are not isomorphic to any substructure lat...
متن کاملDefinability in Substructure Orderings, II: Finite Ordered Sets
Let P be the ordered set of isomorphism types of finite ordered sets (posets), where the ordering is by embeddability. We study first-order definability in this ordered set. We prove among other things that for every finite poset P , the set {p, p} is definable, where p and p are the isomorphism types of P and its dual poset. We prove that the only non-identity automorphism of P is the duality ...
متن کامل