RF MEMS DPDT Switch
نویسندگان
چکیده
The paper explores the modelling and simulation of a Radio Frequency Micro Electro-Mechanical Systems (RF MEMS) switch with the use of a novel seesaw design providing Double-Pole Double-Throw (DPDT) functionality. This optimises the capabilities of the seesaw design structure for use in mobile communications systems and devices. After researching other available seesaw designs, it was realised that an improvement could be achieved by applying additional contacts. During its development, the DPDT switch achieved a low electrostatic actuation voltage of 14 V, providing the switch with improved compatibility for common voltage levels used in mobile devices. The switch is a progression of existing Single-Pole Single-Throw (SPST) seesaw switches, with an additional set of upper and lower contacts at each side of the seesaw, offering DPDT switching capabilities. The length of the switch is 41 μm, which is a suitable size for fabrication and conforms to the Microscale, from 1 μm to 100 μm. Copper Bulk General (Cu) was chosen for the pivot material on its merits of possessing good electrical conductivity and optimised flexibility and stiffness for elastic recovery. The simulation attained a working switch design with an ‘Air-Gap’ of 1μm between the contacts, thus providing isolation while the switch is open-circuited.
منابع مشابه
Design and simulation of a RF MEMS shunt capacitive switch with low actuation voltage, low loss and high isolation
According to contact type, RF MEMS switches are generally classified into two categories: Capacitive switches and Metal-to-Metal ones. The capacitive switches are capable to tolerate a higher frequency range and more power than M-to-M switches. This paper presents a cantilever shunt capacitive RF MEMS switch with characteristics such as low trigger voltage, high capacitive ratio, short switchin...
متن کاملAnalysis of drain Current and Switching Speed for SPDT Switch and Dpdt Switch with the Proposed DP4T RF CMOS Switch
Conventional CMOS switch uses NMOS as transistors in its main architecture requiring a control voltage of 5.0V and a large resistance at the receivers and antennas (ANTs) to detect the signal. A CMOS integrated circuit switch uses FET transistors to achieve switching between multiple paths, because of its high value of control voltage. Hence it is not suitable for modern portable devices which ...
متن کاملHigh-cycle Life Testing of Rf Mems Switches (preprint)
RF MEMS capacitive switches capable of orderof-magnitude impedance changes have demonstrated operating lifetimes exceeding 100 billion switching cycles without failure. In situ monitoring of switch characteristics demonstrates no significant degradation in performance and quantifies the charging properties of the switch silicon dioxide film. This demonstration leads credence to the mechanical r...
متن کاملHigh Power (>1W) Application RF MEMS Lifetime Performance Evaluation
1.0 INTRODUCTION Solid-state RF devices are currently utilized in a wide array of application areas, including satellite communications systems, wireless communications systems, automotive radars, and defense applications. Currently, PIN diode or Field Effect Transistor (FET)-based switches are utilized for their high switching speeds, high power handling, low drive voltage, low cost, and techn...
متن کاملطراحی، شبیهسازی و ساخت سوئیچ خازنی RF MEMSبر روی بستر آلومینا
In this paper, design, analysis and fabrication of a low loss capacitive RF MEMS shunt switch, which made on the coplanar waveguide transmission line and alumina substrate in the frequency band of 40-60 GHz, is presented. The CPW is designed to have 50Ω impedance matching on the alumina substrate. Then the desired switch is designed with appropriate dimensions. Afterward the important par...
متن کامل