Identification of the hemangioblast in postnatal life.
نویسندگان
چکیده
Postnatal CD34(+) cells expressing vascular endothelial growth factor receptor 2 (KDR) generate hematopoietic or endothelial progeny in different in vitro and in vivo assays. Hypothetically, CD34(+)KDR(+) cells may comprise hemangioblasts bipotent for both lineages. This hypothesis is consistent with 2 series of experiments. In the first series, in clonogenic culture permissive for hematopoietic and endothelial cell growth, CD34(+)KDR(+) cells generate large hemato-endothelial (Hem-End) colonies (5% of seeded cells), whereas CD34(+)KDR(-) cells do not. Limiting-dilution analysis indicates that Hem-End colonies are clonally generated by single hemangioblasts. Sibling cells generated by a hemangioblast, replated in unicellular culture, produce either hematopoietic or Hem-End colonies, depending on the specific culture conditions. Identification of endothelial cells was based on the expression of VE-cadherin and endothelial markers and with lack of CD45 and hematopoietic molecules, as evaluated by immunofluorescence, immunocytochemistry, and reverse transcription-polymerase chain reaction. Furthermore, endothelial cells were functionally identified using low-density lipoprotein (LDL) uptake and tube-formation assays. In the second series, to evaluate the self-renewal capacity of hemangioblasts, single CD34(+)KDR(+) cells were grown in 3-month extended long-term culture (ELTC) through 3 serial culture rounds-that is, blast cells generated in unicellular ELTC were reseeded for a subsequent round of unicellular ELTC. After 9 months, 10% blasts from tertiary ELTC functioned as hemangioblasts and generated macroscopic Hem-End colonies in clonogenic culture. These studies identified postnatal hemangioblasts in a CD34(+)KDR(+) cell subset, endowed with long-term proliferative potential and bilineage differentiation capacity. Although exceedingly rare, hemangioblasts may represent the lifetime source/reservoir for primitive hematopoietic and endothelial progenitors.
منابع مشابه
Effect of Gestational Diabetes on Purkinje and Granule Cells Distribution of the Rat Cerebellum in 21 and 28 days of Postnatal Life
Introduction: Diabetes mellitus is associated with nervous system alterations in both human and animal models. This study was done to determine the effect of gestational diabetes on the Purkinje and granular cells in the cerebellum of rat offspring. Methods: 10 Wistar rats Dams were randomly allocated in control and diabetic group. The experimental group received 40 mg/kg/body wei...
متن کاملCharacteristics of Minor Hematology
This article has summarized parts of certain publications about changes of hematopoietic elements, specially erythroid, during embryonic and fetal to the third postnatal life. The main purpose of this article is to familiarize medical students with the physiological characteristics of the blood system, chiefly in the first trimenon of postnatal life. It is also aimed to prevent many incorrec...
متن کاملقابلیت تمایز سلولهای بنیادی جنین انسان (Royan H5) به سلولهای همانژیوبلاست در شرایط آزمایشگاهی
Background: Human embryonic stem cells (hESCs) are capable of self-renewal and large-scale expansion. They also have the capacity to differentiate into a variety of cell types including liver, cardiac and neuron cells. However, it is not yet clear whether hESCs can differentiate to hemangioblasts under in-vitro conditions. Hemangioblasts are bipotential progenitors that can generate hematopoiet...
متن کاملImmunohistochmistry Study of Collagen IV Changes in Glomerular Basement Memebrane During Fetal and Postnatal Periods of Balb/c Mice
Purpose: In this investigation specific antibody type IV collagen has been used in light microscopy to study development of BMG of the embryonic and postnatal mouse glomerular mesangium. Materials and Methods:20 female Balb/C mice were selected randomly and were kept under normal condition, finding vaginal plug was assumed as day zero of pregnancy. 12 pregnant mice were scarified by cervical di...
متن کاملIdentification of Novel Hemangioblast Genes in the Early Chick Embryo
During early vertebrate embryogenesis, both hematopoietic and endothelial lineages derive from a common progenitor known as the hemangioblast. Hemangioblasts derive from mesodermal cells that migrate from the posterior primitive streak into the extraembryonic yolk sac. In addition to primitive hematopoietic cells, recent evidence revealed that yolk sac hemangioblasts also give rise to tissue-re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 100 9 شماره
صفحات -
تاریخ انتشار 2002