The family-specific a4-helix of the kinesin-13, MCAK, is critical to microtubule end recognition
نویسندگان
چکیده
Kinesins that influence the dynamics of microtubule growth and shrinkage require the ability to distinguish between the microtubule end and the microtubule lattice. The microtubule depolymerizing kinesin MCAK has been shown to specifically recognize the microtubule end. This ability is key to the action of MCAK in regulating microtubule dynamics. We show that the a4-helix of the motor domain is crucial to microtubule end recognition. Mutation of the residues K524, E525 and R528, which are located in the C-terminal half of the a4-helix, specifically disrupts the ability of MCAK to recognize the microtubule end. Mutation of these residues, which are conserved in the kinesin-13 family and discriminate members of this family from translocating kinesins, impairs the ability of MCAK to discriminate between the microtubule lattice and the microtubule end.
منابع مشابه
The family-specific α4-helix of the kinesin-13, MCAK, is critical to microtubule end recognition
Kinesins that influence the dynamics of microtubule growth and shrinkage require the ability to distinguish between the microtubule end and the microtubule lattice. The microtubule depolymerizing kinesin MCAK has been shown to specifically recognize the microtubule end. This ability is key to the action of MCAK in regulating microtubule dynamics. We show that the α4-helix of the motor domain is...
متن کاملFull-length dimeric MCAK is a more efficient microtubule depolymerase than minimal domain monomeric MCAK.
MCAK belongs to the Kinesin-13 family, whose members depolymerize microtubules rather than translocate along them. We defined the minimal functional unit of MCAK as the catalytic domain plus the class specific neck (MD-MCAK), which is consistent with previous reports. We used steady-state ATPase kinetics, microtubule depolymerization assays, and microtubule.MCAK cosedimentation assays to compar...
متن کاملIn Vitro Reconstitution of the Functional Interplay between MCAK and EB3 at Microtubule Plus Ends
The kinesin-13 family member mitotic centromere-associated kinesin (MCAK) is a potent microtubule depolymerase. Paradoxically, in cells it accumulates at the growing, rather than the shortening, microtubule plus ends. This plus-end tracking behavior requires the interaction between MCAK and members of the end-binding protein (EB) family, but the effect of EBs on the microtubule-destabilizing ac...
متن کاملA Cdk1 phosphomimic mutant of MCAK impairs microtubule end recognition
The microtubule depolymerising kinesin-13, MCAK, is phosphorylated at residue T537 by Cdk1. This is the only known phosphorylation site within MCAK's motor domain. To understand the impact of phosphorylation by Cdk1 on microtubule depolymerisation activity, we have investigated the molecular mechanism of the phosphomimic mutant T537E. This mutant significantly impairs microtubule depolymerisati...
متن کاملThe kinesin-13 MCAK has an unconventional ATPase cycle adapted for microtubule depolymerization
Unlike other kinesins, members of the kinesin-13 subfamily do not move directionally along microtubules but, instead, depolymerize them. To understand how kinesins with structurally similar motor domains can have such dissimilar functions, we elucidated the ATP turnover cycle of the kinesin-13, MCAK. In contrast to translocating kinesins, ATP cleavage, rather than product release, is the rate-l...
متن کامل