Residual Generator Fuzzy Identification for Wind Farm Fault Diagnosis

نویسندگان

  • S. Simani
  • P. Castaldi
چکیده

In the recent years the wind turbine industry has focused on optimising the cost of energy. One of the important factors in the achievement of this task consists of increasing the reliability of the wind turbines, which can be obtained using advanced fault detection and isolation strategies. Clearly, most faults are managed quite easily at a wind turbine control level. However, some faults are better dealt with at wind farm level, when the wind turbine is located in a wind farm. This paper aims at proposing a fault detection and isolation solution with application to a wind farm benchmark model. The considered benchmark includes a small wind farm of nine wind turbines, based on simple models of wind turbines, as well as the wind and interactions between wind turbines in the wind farm. The solution relies on a set of piecewise affine Takagi–Sugeno models, which are identified from the noisy measurements acquired from the simulated wind park. The design of the fault isolation strategy is also enhanced by the use of the proposed fuzzy approach. Finally, the wind park simulator is exploited for validating the achieved performances of the suggested methodology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Residual Generator Fuzzy Identification for Wind Turbine Benchmark Fault Diagnosis

In order to improve the availability of wind turbines, thus improving their efficiency, it is important to detect and isolate faults in their earlier occurrence. The main problem of model-based fault diagnosis applied to wind turbines is represented by the system complexity, as well as the reliability of the available measurements. In this work, a data-driven strategy relying on fuzzy models is...

متن کامل

Model-based Approach for Multi-sensor Fault Identification in Power Plant Gas Turbines

In this paper, ‎the multi-sensor fault diagnosis in the exhaust temperature sensors of a V94.2 heavy duty gas turbine is presented‎. ‎A Laguerre network-based fuzzy modeling approach is presented to predict the output temperature of the gas turbine for sensor fault diagnosis‎. Due to the nonlinear dynamics of the gas turbine, in these models the Laguerre filter parts are related to the linear d...

متن کامل

Residual generator fuzzy identification for automotive diesel engine fault diagnosis

Safety in dynamic processes is a concern of rising importance, especially if people would be endangered by serious system failure. Moreover, as the control devices which are now exploited to improve the overall performance of processes include both sophisticated control strategies and complex hardware (input-output sensors, actuators, components and processing units), there is an increased prob...

متن کامل

Multi-Machine Stability of a Wind Farm Embedded Power System using FACTS Controllers

-Wind Energy is one of the cheapest available renewable sources of energy. Now-a-days the demand for electricity increases drastically. A number of wind farms are already in operation and more are planned or under construction due to the increasing demand of the bulk amount of the electricity. It is must to identify the interactions between the Wind Turbines and the Power System. Here the Power...

متن کامل

Variable Speed Wind Turbine DFIG Back to Back Converters Open-Circuit Fault Diagnosis by Using of Combiniation Signal-Based and Model-Based Methodes

Condition monitoring (CM) and Fault Detection (FD) of wind turbine lead to increase in reliability and availability of turbine. IGBT open circuit of wind turbine converter will bring about depletion in output current of converter and as a result, reduction in production of wind turbine power. In this research, back to back converter IGBT open - gate fault for wind turbine based on DFIG is detec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014