Beta Radiation Enhanced Thermionic Emission from Diamond Thin Films

نویسندگان

  • Alex Croot
  • Gary Wan
  • Alex Rowan
  • Hugo D. Andrade
  • James A. Smith
  • Neil A. Fox
چکیده

Diamond-based thermionic emission devices could provide a means to produce clean and renewable energy through direct heat-to-electrical energy conversion. Hindering progress of the technology are the thermionic output current and threshold temperature of the emitter cathode. In this report, we study the effects on thermionic emission caused by in situ exposure of the diamond cathode to beta radiation. Nitrogen-doped diamond thin films were grown by microwave plasma chemical vapor deposition on molybdenum substrates. The hydrogen-terminated nanocrystalline diamond was studied using a vacuum diode setup with a 63Ni beta radiation source-embedded anode, which produced a 2.7-fold increase in emission current compared to a 59Ni-embedded control. The emission threshold temperature was also examined to further assess the enhancement of thermionic emission, with 63Ni lowering the threshold temperature by an average of 58 ± 11 °C compared to the 59Ni control. Various mechanisms for the enhancement are discussed, with a satisfactory explanation remaining elusive. Nevertheless, one possibility is discussed involving excitation of preexisting conduction band electrons that may skew their energy distribution toward higher energies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermionic emission from surface-terminated nanocrystalline diamond

Thermionic electron emission forms the basis of both electron sources for a variety of applications and a direct energy conversion process that is compact and scalable. The present study characterizes thermionic emission from boron-doped nanocrystalline diamond films with hydrogen and nitrophenyl surface termination layers. A hemispherical energy analyzer was used to measure electron energy dis...

متن کامل

Solid-State and Vacuum Thermionic Energy Conversion

A brief overview of the research activities at the Thermionic Energy Conversion (TEC) Center is given. The goal is to achieve direct thermal to electric energy conversion with >20% efficiency and >1W/cm power density at a hot side temperature of 300-650C. Thermionic emission in both vacuum and solid-state devices is investigated. In the case of solid-state devices, hot electron filtering using ...

متن کامل

Thermionic Emission from Diamond Films in Molecular Hydrogen Environments

Diamond-based low-work function thermionic electron emitters are in high demand for applications ranging from electron guns and space thrusters to electrical energy converters. A key requirement of such diamond-based electron sources is hydrogen termination of the surfaces which can significantly reduce the emission barrier. However, at high temperatures (≤600°C), terminated hydrogen begins to ...

متن کامل

Advances in Thermionic Energy Conversion through Single-Crystal n-Type Diamond

Thermionic energy conversion, a process that allows direct transformation of thermal to electrical energy, presents a means of efficient electrical power generation as the hot and cold side of the corresponding heat engine are separated by a vacuum gap. Conversion efficiencies approaching those of the Carnot cycle are possible if material parameters of the active elements at the converter, i.e....

متن کامل

Nitrogen incorporation and trace element analysis of nanocrystalline diamond thin films by secondary ion mass spectrometry

Nitrogen has been successfully incorporated into nanocrystalline diamond films produced by a CH4 /N2 microwave plasma-enhanced chemical vapor deposition method. High mass resolution secondary ion mass spectrometry ~SIMS! characterization shows that the density of the incorporated nitrogen, monitored via CN, can be as high as 10 atoms/cm, depending on the ratio of CH4 to N2 in the reactant gas a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017