Hard Instance Generation for Sat Title: Hard Instance Generation for Sat

نویسندگان

  • Satoshi Horie
  • Osamu Watanabe
چکیده

We consider the problem of generating hard instances for the Satisfying Assignment Search Problem (in short, SAT). It is not known whether SAT is di cult on average, while it has been believed that the Factorization Problem (in short, FACT) is hard on average. Thus, one can expect to generate hard-on-average instances by using a reduction from FACT to SAT. Although the asymptotically best reduction is obtained by using the Fast Fourier Transform [SS71] (in short, FFT), its constant factor is too big in practice. Here we propose to use the Chinese Remainder Theorem for constructing e cient yet simple reductions from FACT to SAT. First by using the Chinese Remainder Theorem recursively, we de ne a reduction that produces, from n bit FACT instances, SAT instances in the conjunctive normal form with O(n 1+ ) variables, where > 0 is any xed constant. (Cf. The reduction using FFT yields instances with O(n log n log log n) variables.) Next we demonstrate the e ciency of our approach with some concrete examples; we de ne a reduction that produces relatively small SAT instances. For example, it is possible to construct SAT instances with about 5,600 variables that is as hard as factorizing 100 bit integers. (Cf. The straightforward reduction yields SAT instances with 7,600 variables.)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title: Hard Instance Generation for Sat

We consider the problem of generating hard instances for the Satisfying Assignment Search Problem (in short, SAT). It is not known whether SAT is difficult on average, while it has been believed that the Factorization Problem (in short, FACT) is hard on average. Thus, one can expect to generate hard-on-average instances by using a reduction from FACT to SAT. Although the asymptotically best red...

متن کامل

Using Synthesis Techniques in SAT Solvers

In many application domains in VLSI CAD, like formal verification or test pattern generation, the problem to be solved can be formulated as an instance of satisfiability (SAT). The SAT instance in this cases is usually derived from a circuit description. In this paper we propose to use techniques known from logic synthesis to speed up SAT solvers. By experiments it is shown that these technique...

متن کامل

Hard instance generation for SAT

We consider the problem of generating hard instances for the Satisfying Assignment Search Problem (in short, SAT). It is not known whether SAT is difficult on average, while it has been believed that the Factorization Problem (in short, FACT) is hard on average. Thus, one can expect to generate hard-on-average instances by using a reduction from FACT to SAT. Although the asymptotically best red...

متن کامل

On the Hardness and Easiness of Random 4-SAT Formulas

Assuming 3-SAT formulas are hard to refute with high probability, Feige showed approximation hardness results, among others for the max bipartite clique. We extend this result in that we show that approximating max bipartite clique is hard under the weaker assumption, that random 4-SAT formulas are hard to refute with high probability. On the positive side we present an efficient algorithm whic...

متن کامل

Using CSP Look-Back Techniques to Solve Exceptionally Hard SAT Instances

While CNF propositional satisfiability (SAT) is a sub-class of the more general constraint satisfaction problem (CSP), conventional wisdom has it that some well-known CSP look-back techniques -including backjumping and learning -are of little use for SAT. We enhance the Tableau SAT algorithm of Crawford and Auton with look-back techniques and evaluate its performance on problems specifically de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996