Enlargement of growth plate chondrocytes modulated by sustained mechanical loading.
نویسندگان
چکیده
BACKGROUND Mechanical compression and distraction forces are known to modulate growth in vertebral growth plates, and they have been implicated in the progression of scoliosis. This study was performed to test the hypothesis that growth differences produced by sustained compression or distraction loading of vertebrae are associated with alterations in the amount of increase in the height of growth plate chondrocytes in the growth direction. METHODS Compression or distraction force of nominally 60% of body weight was maintained for four weeks on a caudad vertebra of growing rats by an external apparatus attached, by means of transcutaneous pins, to the two vertebrae cephalad and caudad to it. Growth of the loaded and control vertebrae was measured radiographically. After four weeks, the animals were killed and histological sections of the loaded and control vertebrae were prepared to measure the height of the hypertrophic zone (average separation between zonal boundaries), the mean height of hypertrophic chondrocytes, and the amount of increase in cell height in the growth direction. RESULTS Over the four weeks of the experiment, the growth rates of the compressed and distracted vertebrae averaged 52% and 113% of the control rates, respectively. The reduction in the growth rate of the compressed vertebrae was significant (p = 0.002). In the compressed vertebrae, the height of the hypertrophic zone, the mean chondrocyte height, and the amount of increase in cell height averaged 87%, 85%, and 78% of the control values, respectively, and all were significantly less than the corresponding control values. In the distracted vertebrae, these measurements did not differ significantly from the control values. The height of the hypertrophic zone and the mean chondrocyte height correlated with the growth rate (r (2) = 0.29 [p = 0.03] and r (2) = 0.23 [p = 0.06], respectively), when each variable was expressed as a proportion of the control value. The percentage changes in the measurements of the chondrocytic dimensions relative to the control values were smaller than the percentage changes in the growth rates, a finding that suggested that the rate of chondrocytic proliferation was also modulated by the mechanical loading. CONCLUSIONS Mechanical loading of tail vertebrae in rats modulated their growth rate, which correlated with changes in the height of hypertrophic chondrocytes. The effects of compression were greater than those of distraction. CLINICAL RELEVANCE Information about the growth rate and chondrocytic response to mechanical loads in rat vertebrae undergoing mechanically modulated growth will be helpful in determining how human vertebral growth might respond to altered loading states during progression or treatment of scoliosis and other growth-related angular skeletal deformities.
منابع مشابه
Alterations in the growth plate associated with growth modulation by sustained compression or distraction.
Sustained mechanical load is known to modulate endochondral growth in the immature skeleton, but it is not known what causes this mechanical sensitivity. This study aimed to quantify alterations in parameters of growth plate performance associated with mechanically altered growth rate. Vertebral and proximal tibial growth plates of immature rats and cattle, and rabbit (proximal tibia only) were...
متن کاملGrowth plate mechanics and mechanobiology. A survey of present understanding.
The longitudinal growth of long bones occurs in growth plates where chondrocytes synthesize cartilage that is subsequently ossified. Altered growth and subsequent deformity resulting from abnormal mechanical loading is often referred to as mechanical modulation of bone growth. This phenomenon has key implications in the progression of infant and juvenile musculoskeletal deformities, such as ado...
متن کاملRegulation of PTHrP expression by cyclic mechanical strain in postnatal growth plate chondrocytes.
Mechanical loading has been widely considered to be a crucial regulatory factor for growth plate development, but the exact mechanisms of this regulation are still not completely understood. In the growth plate, parathyroid hormone-related protein (PTHrP) regulates chondrocyte differentiation and longitudinal growth. Cyclic mechanical strain has been demonstrated to influence growth plate chond...
متن کاملMechanical loading regulates organization of the actin cytoskeleton and column formation in postnatal growth plate
Longitudinal growth of bones occurs at the growth plates where chondrocytes align into columns that allow directional growth. Little is known about the mechanisms controlling the ability of chondrocytes to form columns. We hypothesize that mechanical load and the resulting force on chondrocytes are necessary during active growth for proper growth plate development and limb length. To test this ...
متن کاملGrowth plate chondrocyte enlargement modulated by mechanical loading.
Mechanical compression and distraction forces are known to modulate growth in vertebral growth plates, and are implicated in the progression of scoliosis. The amount of cellular enlargement is thought to be a key variable correlating with differing growth at different anatomical sites. This work tested the hypothesis that growth differences produced by mechanical loading are associated with alt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of bone and joint surgery. American volume
دوره 84-A 10 شماره
صفحات -
تاریخ انتشار 2002