A four-node hybrid assumed-strain finite element for laminated composite plates
نویسندگان
چکیده
Fibre-reinforced plates and shells are finding an increasing interest in engineering applications. Consequently, efficient and robust computational tools are required for the analysis of such structural models. As a matter of fact, a large amount of laminate finite elements have been developed and incorporated in most commercial codes for structural analysis. In this paper a new laminate hybrid assumed-strain plate element is derived within the framework of the Firstorder Shear Deformation Theory (i.e. assuming that particles of the plate originally lying along a straight line which is normal to the undeformed middle surface remain aligned along a straight line during the deformation process) and assuming perfect bonding between laminae. The in-plane components of the (infinitesimal) strain tensor are interpolated and by making use of the constitutive law, the corresponding in-plane stress distribution is deduced for each layer. Out-of-plane shear stresses are then computed by integrating the equilibrium equations in each lamina, account taken of their continuity requirements. Out-of-plane shear strains are finally obtained via the inverse constitutive law. The resulting global strain field depends on a fixed number of parameters, regardless of the total number of layers; 12 degrees of freedom are for instance assumed for the developed rectangular element. The proposed model does not suffer locking phenomena even in the thin plate limit and provides an accurate description of inter-laminar stresses. Results are compared with both analytical and other finite element solutions. keyword: Laminated composite plates, hybrid finite elements, assumed strain methods, shear-locking. 1 DIMS, University of Trento, Trento, ITALY; corresponding author. 2 Italferr, Milano, ITALY. 3 DI, University of Ferrara, Ferrara, ITALY. 4 UCI, Irvine, CA, USA.
منابع مشابه
Hygrothermal Analysis of Laminated Composite Plates by Using Efficient Higher Order Shear Deformation Theory
Hygrothermal analysis of laminated composite plates has been done by using an efficient higher order shear deformation theory. The stress field derived from hygrothermal fields must be consistent with total strain field in this type of analysis. In the present formulation, the plate model has been implemented with a computationally efficient C0 finite element developed by using consistent strai...
متن کاملSolid-shell element model of assumed through-thickness electric distribution for laminate composite piezoelectric structures
The eight-node solid-shell finite element models have been developed for the analysis of laminated composite pate/shell structures with piezoelectric actuators and sensors. To resolve the locking problems of the solid-shell elements in laminated materials and improve accuracy, the assumed natural strain method and hybrid stress method are employed. The nonlinear electric potential distributio...
متن کاملFree vibration analysis of variable stiffness composite laminated thin skew plates using IGA
A NURBS-based isogeometric finite element formulation is developed and adopted to the free vibration analysis of finite square and skew laminated plates. Variable stiffness plies are assumed due to implementation of curvilinear fiberreinforcements. It is assumed due to employment of tow placement technology, in each ply of variable stiffness composite laminated plate the fiber reinforceme...
متن کاملAnalytical and Numerical Investigation of FGM Pressure Vessel Reinforced by Laminated Composite Materials
In this research, the analytical and numerical investigation of a cylindrical shell made of functionally graded materials (FGMs) reinforced by laminated composite subjected to internal pressure is presented. Using the infinitesimal theory of elasticity, the analytical solution of stress and strain in vessels made of FGMs is studied first. It is assumed that the elasticity modulus follows a powe...
متن کاملNonlinear Finite Element Eccentric Low-Velocity Impact Analysis of Rectangular Laminated Composite Plates Subjected to In-phase/Anti-phase Biaxial Preloads
All impact analyses performed so far for the composite plates, have treated central impacts. Furthermore, investigations on influences of the in-plane biaxial compression, tension, or tension-compression preloads on various responses of the low-velocity impact, especially the indentation, have not been performed so far. In the present research, a finite element formulation is presented for resp...
متن کامل