When Fashion Meets Big Data: Discriminative Mining of Best Selling Clothing Features

نویسندگان

  • Kuan-Ting Chen
  • Jiebo Luo
چکیده

With the prevalence of e-commence websites and the ease of online shopping, consumers are embracing huge amounts of various options in products. Undeniably, shopping is one of the most essential activities in our society and studying consumer’s shopping behavior is important for the industry as well as sociology and psychology. Indisputable, one of the most popular e-commerce categories is clothing business. There arises the needs for analysis of popular and attractive clothing features which could further boost many emerging applications, such as clothing recommendation and advertising. In this work, we design a novel system that consists of three major components: 1) exploring and organizing a large-scale clothing dataset from a online shopping website, 2) pruning and extracting images of best-selling products in clothing item data and user transaction history, and 3) utilizing a machine learning based approach to discovering fine-grained clothing attributes as the representative and discriminative characteristics of popular clothing style elements. Through the experiments over a large-scale online clothing shopping dataset, we demonstrate the effectiveness of our proposed system, and obtain useful insights on clothing consumption trends and profitable clothing features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mathematical model for dynamic cell formation in fast fashion apparel manufacturing stage

This paper presents a mathematical programming model for dynamic cell formation to minimize changeover-related costs (i.e., machine relocation costs and machine setup cost) and inter-cell material handling cost to cope with the volatile production environments in apparel manufacturing industry. The model is formulated through findings of a comprehensive literature review. Developed model is val...

متن کامل

Fast Fashion Guided Clothing Image Retrieval: Delving Deeper into What Feature Makes Fashion

Clothing fashion represents human’s aesthetic appreciation towards their outfits and reflects the development status of society, humanitarian and economics. Modelling fashion via machine is extremely difficult due to the fact that fashion is too abstract to be efficiently described by machine. In this paper, we delve into two fashion related problems: what type of image feature best describes f...

متن کامل

The Big Data mining to improve medical diagnostics quality

The paper offers a method of the big data mining to solve problems of identification of cause-and-effect relationships in changing diagnostic information on medical images with different kinds of diseases. As integrated indices of the fundus vessels and coronary heart blood vessels we have used a global set of geometric features which is supposed to be a rather complete characteristic of diagno...

متن کامل

How to Fool Radiologists with Generative Adversarial Networks? A Visual Turing Test for Lung Cancer Diagnosis

Discriminating lung nodules as malignant or benign is still an underlying challenge. To address this challenge, radiologists need computer aided diagnosis (CAD) systems which can assist in learning discriminative imaging features corresponding to malignant and benign nodules. However, learning highly discriminative imaging features is an open problem. In this paper, our aim is to learn the most...

متن کامل

Web Mining Techniques in E-Commerce Applications

Today web is the best medium of communication in modern business. Many companies are redefining their business strategies to improve the business output. Business over internet provides the opportunity to customers and partners where their products and specific business can be found. Nowadays online business breaks the barrier of time and space as compared to the physical office. Big companies ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017