The Single-leaf Frobenius Theorem with Applications
نویسنده
چکیده
Using the notion of Levi form of a smooth distribution, we discuss the local and the global problem of existence of one horizontal section of a smooth vector bundle endowed with a horizontal distribution. The analysis will lead to the formulation of a “one-leaf” analogue of the classical Frobenius integrability theorem in elementary differential geometry. Several applications of the result will be discussed. First, we will give a characterization of symmetric connections arising as Levi–Civita connections of semi-Riemannian metric tensors. Second, we will prove a general version of the classical Cartan–Ambrose–Hicks Theorem giving conditions on the existence of an affine map with prescribed differential at one point between manifolds endowed with connections.
منابع مشابه
Frobenius kernel and Wedderburn's little theorem
We give a new proof of the well known Wedderburn's little theorem (1905) that a finite division ring is commutative. We apply the concept of Frobenius kernel in Frobenius representation theorem in finite group theory to build a proof.
متن کاملThe Sign-Real Spectral Radius for Real Tensors
In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.
متن کاملPERRON-FROBENIUS THEORY ON THE NUMERICAL RANGE FOR SOME CLASSES OF REAL MATRICES
We give further results for Perron-Frobenius theory on the numericalrange of real matrices and some other results generalized from nonnegative matricesto real matrices. We indicate two techniques for establishing the main theorem ofPerron and Frobenius on the numerical range. In the rst method, we use acorresponding version of Wielandt's lemma. The second technique involves graphtheory.
متن کاملCommon fixed point theorem for nonexpansive type single valued mappings
The aim of this paper is to prove a common fixed point theorem for nonexpansive type single valued mappings which include both continuous and discontinuous mappings by relaxing the condition of continuity by weak reciprocally continuous mapping. Our result is generalize and extends the corresponding result of Jhade et al. [P.K. Jhade, A.S. Saluja and R. Kushwah, Coincidence and fixed points of ...
متن کاملFrobenius-Schur Indicator for Categories with Duality
We introduce the Frobenius–Schur indicator for categories with duality to give a category-theoretical understanding of various generalizations of the Frobenius–Schur theorem including that for semisimple quasi-Hopf algebras, weak Hopf C∗-algebras and association schemes. Our framework also clarifies a mechanism of how the “twisted” theory arises from the ordinary case. As a demonstration, we es...
متن کامل