GABA release and uptake regulate neuronal precursor migration in the postnatal subventricular zone.

نویسندگان

  • Anna J Bolteus
  • Angélique Bordey
چکیده

In the postnatal subventricular zone (SVZ), astrocyte-like cells tightly encapsulate chains of migrating neuronal precursors, although an influence of the astrocyte-like cells on precursor migration has not yet been demonstrated. Cell migration was studied in acute sagittal brain slices to determine whether GABA signaling between astrocyte-like cells and neuronal precursors controls the speed of neuronal precursor migration in the anterior SVZ and rostral migratory stream of juvenile and adult mice. Application of GABA at 10 microm, a nondesensitizing concentration for GABA(A) receptors (GABA(A)Rs), reduced the rate (mean of approximately 50 microm/hr) of cell migration by 21% via GABA(A)R activation. Application of the GABA(A)R antagonist bicuculline enhanced the migration rate by 30%, suggesting that endogenous GABA tonically reduces the speed of cell migration via GABA(A)R activation. Using immunohistochemistry, we found that astrocyte-like cells express the high-affinity GABA transporter subtype GAT4 on processes ensheathing neuronal precursors that contain GABA. Inhibition of GABA uptake into astrocyte-like cells or enhancement of GABA release from neuronal precursors during high K(+) application further reduced the migration rate by increasing ambient GABA levels. GABA altered the migration speed by interfering with intracellular Ca(2+) signaling independently of cell depolarization, because high K(+) application did not alter the speed of cell migration in the presence of bicuculline. These data indicate that astrocyte-like cells create a microenvironment in which their uniquely positioned GABA transporters control the degree of GABA(A)R activation and the migration of neuronal precursors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abnormal neuronal migration changes the fate of developing neurons in the postnatal olfactory bulb.

Neuronal precursors are continuously integrated into the adult olfactory bulb (OB). The vast majority of these precursor cells originates from the subventricular zone and migrates along the rostral migratory stream (RMS) en route to the OB. This process, called postnatal neurogenesis, results from intricate pathways depending both on cell-autonomous factors and extrinsic regulation provided by ...

متن کامل

Nonsynaptic GABA signaling in postnatal subventricular zone controls GFAP-expressing progenitor proliferation

In the postnatal subventricular zone (SVZ) local cues or signaling molecules released from neuroblasts limit the proliferation of glial fibrillary acidic protein (GFAP)-expressing progenitors thought to be stem cells. However, signals between SVZ cells have not been identified. We show that depolarizations of neuroblasts induce nonsynaptic SNARE-independent GABAA receptor currents in GFAP-expre...

متن کامل

Thrombospondin-1 binds to ApoER2 and VLDL receptor and functions in postnatal neuronal migration.

Apolipoprotein E receptor 2 (ApoER2), very low-density lipoprotein receptor (VLDLR), and Dab1 are the main components of the Reelin signalling cascade. Reelin is the sole ligand defined so far in signalling through this pathway. Postnatal migration of neuronal precursors from the subventricular zone (SVZ) to the olfactory bulb (OB), however, depends on ApoER2 and Dab1, but functions independent...

متن کامل

Neuronal migration from the forebrain to the olfactory bulb requires a new attractant persistent in the olfactory bulb.

Interneurons in the olfactory bulb (OB) are generated not only in the developing embryo but also throughout the postnatal life of mammals from neuronal precursor cells migrating from the anterior subventricular zone (SVZa) of the mammalian forebrain. We discovered that the OB secretes a diffusible activity that attracts these neuronal precursor cells. The attractive activity is present in speci...

متن کامل

The Role of Astrocytes in the Generation, Migration, and Integration of New Neurons in the Adult Olfactory Bulb

In mammals, new neurons in the adult olfactory bulb originate from a pool of neural stem cells in the subventricular zone of the lateral ventricles. Adult-born cells play an important role in odor information processing by adjusting the neuronal network to changing environmental conditions. Olfactory bulb neurogenesis is supported by several non-neuronal cells. In this review, we focus on the r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 24 35  شماره 

صفحات  -

تاریخ انتشار 2004