Comparison of Neural Networks and Gravity Models in Trip Distribution
نویسندگان
چکیده
Transportation engineers are commonly faced with the question of how to extract information from expensive and scarce field data. Modeling the distribution of trips between zones is complex and dependent on the quality and availability of field data. This research explores the performance of neural networks in trip distribution modeling and compares the results with commonly used doubly constrained gravity models. The approach differs from other research in several respects; the study is based on both synthetic data, varying in complexity, as well as real-world data. Furthermore, neural networks and gravity models are calibrated using different percentages of hold out data. Extensive statistical analyses are conducted to obtain necessary sample sizes for significant results. The results show that neural networks outperform gravity models when data are scarce in both synthesized as well as real-world cases. Sample size for statistically significant results is forty times lower for neural networks.
منابع مشابه
Trip Distribution Modelling Using Neural Network
Trip distribution is the second important stage in the 4-step travel demand forecasting. The purpose of the trip distribution forecasting is to estimates the trip linkages or interactions between traffic zones for trip makers. The problem of trip distribution is of non-linear nature and Neural Networks (NN) are well suited for addressing the non-linear problems. This fact supports the use of ar...
متن کاملPrediction of Blasting Cost in Limestone Mines Using Gene Expression Programming Model and Artificial Neural Networks
The use of blasting cost (BC) prediction to achieve optimal fragmentation is necessary in order to control the adverse consequences of blasting such as fly rock, ground vibration, and air blast in open-pit mines. In this research work, BC is predicted through collecting 146 blasting data from six limestone mines in Iran using the artificial neural networks (ANNs), gene expression programming (G...
متن کاملAccuracy comparison of Elamn and Jordan artificial neural networks for air particular matter concentration (PM 10) prediction using MODIS satellite images, a case study of Ahvaz.
Due to the complexity of air pollution action, artificial intelligence models specifically, neural networks are utilized to simulate air pollution. So far, numerous artificial neural network models have been used to estimate the concentration of atmospheric PMs. These models have had different accuracies that scholars are constantly exceed their efficiency using numerous parameters. The current...
متن کاملDetermination of Lateral load Capacity of Steel Shear Walls Based on Artificial Neural Network Models
In this paper, load-carrying capacity in steel shear wall (SSW) was estimated using artificial neural networks (ANNs). The SSW parameters including load-carrying capacity (as ANN’s target), plate thickness, thickness of stiffener, diagonal stiffener distance, horizontal stiffener distance and gravity load (as ANN’s inputs) are used in this paper to train the ANNs. 144 samples data of each of th...
متن کاملThe Modeling and Comparison of GMDH and RBF Artificial Neural Networks in Forecasting Consumption of Petroleum Products in the Agricultural Sector
Energy plays a significant role in today's developing societies. The role of energy demands to make decisions and policy with regard to its production, distribution, and supply. The vital importance of energy, especially fossil fuels, is a factor affecting agricultural production. This factor has a great influence on the production of agricultural products in Iran. The forecast of the con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comp.-Aided Civil and Infrastruct. Engineering
دوره 21 شماره
صفحات -
تاریخ انتشار 2006