Wavelet Based Iterative Learning Control with Fuzzy PD Feedback for Position Tracking of A Pneumatic Servo System

نویسندگان

  • C. E. Huang
  • J. S. Chen
چکیده

In this paper, a wavelet-based iterative learning control (WILC) scheme with Fuzzy PD feedback is presented for a pneumatic control system with nonsmooth nonlinearities and uncertain parameters. The wavelet transform is employed to extract the learnable dynamics from measured output signal before it can be used to update the control profile. The wavelet transform is adopted to decompose the original signal into many low-resolution signals that contain the learnable and unlearnable parts. The desired control profile is then compared with the learnable part of the transformed signal. Thus, the effects from unlearnable dynamics on the controlled system can be attenuated by a Fuzzy PD feedback controller. As for the rules of Fuzzy PD controller in the feedback loop, a genetic algorithm (GA) is employed to search for the inference rules of optimization. A proportional-valve controlled pneumatic cylinder actuator system is used as the control target for simulation. Simulation results have shown a much-improved positiontracking performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Position Control of a Pulse Width Modulated Pneumatic Systems: an Experimental Comparison

In this study, a new adaptive controller is proposed for position control of pneumatic systems. Difficulties associated with the mathematical model of the system in addition to the instability caused by Pulse Width Modulation (PWM) in the learning-based controllers using gradient descent, motivate the development of a new approach for PWM pneumatics. In this study, two modified Feedback Error L...

متن کامل

Velocity Control of Electro Hydraulic Servo System by using a Feedback Error Learning Method

In this paper, a new control method based on FEL electro hydraulic servo control withnonlinear flux and internal friction, has been presented. The new approach based oncontrollers combined by a classic PD controller and a fuzzy controller is smart. This newtechnique has a good ability to control the performance and stability. Simulations have beencarried out in Matlab environment and the result...

متن کامل

Fuzzy PD Cascade Controller Design for Ball and Beam System Based on an Improved ARO Technique

The ball and beam system is one of the most popular laboratory setups for control education. In this paper, we design a fuzzy PD cascade controller for a ball and beam system using Asexual Reproduction Optimization (ARO) technique. The ball & beam system consists of a servo motor, a grooved beam, and a rolling ball. This system utilizes a servo motor to control ball’s position on the beam. Chan...

متن کامل

Velocity Control of Electro Hydraulic Servo System by Tracking Method

This paper proposes an efficient Tracking method for velocity control of an electro-hydraulic servo system (EHSS) in the presence of flow nonlinearities and internal friction. The tracking method controller is a kind of feedback error learning structure. In the proposed method, the Feedback Error Learning (FEL) algorithm is used to control the velocity. There is no need to compute the system ja...

متن کامل

Tracking control of nonlinear pneumatic actuator systems using static state feedback linearization of the input–output map

To achieve more accurate tracking control, a control strategy for servo pneumatic systems based on the feedback linearization theory is presented. The nonlinear pneumatic actuator system is transformed into a linear system description, with a linear input–output map by regular static state feedback and state coordinate transformation. A servo tracking controller is then developed for the system...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0804.4753  شماره 

صفحات  -

تاریخ انتشار 2007