Tidal dissipation and evolution of white dwarfs around massive black holes: an eccentric path to tidal disruption

نویسندگان

  • Michelle Vick
  • Dong Lai
  • Jim Fuller
چکیده

Awhite dwarf (WD) captured into a high-eccentricity orbit around amassive black hole (MBH) may undergo many pericentre passages before tidal disruption. During these passages, the tidal potential of the MBH excites internal oscillations or waves in the WD, and the dissipation of these oscillations can significantly influence the physical properties of the WD prior to its disruption. We calculate the amplitude of the tidally excited gravity (buoyancy) waves in the WD as a function of the pericentre distance and eccentricity for realistic WD models, under the assumption that these outgoing gravity waves are efficiently dissipated in the outer layers of the WD by non-linear effects or radiative damping. We obtain fitting formulae for the tidal energy and angular momentum transfer rates as well as the tidal heating rate. We find that these dynamical tides are much weaker than gravitational radiation in driving the orbital decay of the WD–MBH binary, and they are also inefficient in changing the WD spin during the orbital evolution. Incorporating our computed tidal dissipation rate into a MESA-based WD evolution code, we find that tidal heating can lead to appreciable brightening of the WD and may induce runaway fusion in the hydrogen envelope well before the WD undergoes tidal disruption.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tidally-induced thermonuclear Supernovae

We discuss the results of 3D simulations of tidal disruptions of white dwarfs by moderate-mass black holes as they may exist in the cores of globular clusters or dwarf galaxies. Our simulations follow self-consistently the hydrodynamic and nuclear evolution from the initial parabolic orbit over the disruption to the build-up of an accretion disk around the black hole. For strong enough encounte...

متن کامل

Tidal disruption and ignition of white dwarfs by moderately massive black holes

We present a numerical investigation of the tidal disruption of white dwarfs by moderately massive black holes, with particular reference to the centers of dwarf galaxies and globular clusters. Special attention is given to the fate of white dwarfs of all masses that approach the black hole close enough to be disrupted and severely compressed to such extent that explosive nuclear burning can be...

متن کامل

Stellar Tidal Processes Near Massive Black Holes

Close tidal interactions of stars with a central massive black hole (MBH) or with other stars in the high density cusp around it can affect a significant fraction of the stellar population within the MBH radius of influence. We consider three strong processes that have the potential of modifying stellar structure and evolution there. (1) Tidal spin-up by hyperbolic star-star encounters. (2) Tid...

متن کامل

Orbital circularisation of white dwarfs and the formation of gravitational radiation sources in star clusters containing an intermediate mass black hole

Aims. We consider how tight binaries consisting of a super-massive black hole of mass M = 10 − 104M⊙ and a white dwarf in quasi-circular orbit can be formed in a globular cluster. We point out that a major fraction of white dwarfs tidally captured by the black hole may be destroyed by tidal inflation during ongoing tidal circularisation, and therefore the formation of tight binaries is inhibite...

متن کامل

Binary sdB Stars with Massive Compact Companions

The masses of compact objects like white dwarfs, neutron stars and black holes are fundamental to astrophysics, but very difficult to measure. We present the results of an analysis of subluminous B (sdB) stars in close binary systems with unseen compact companions to derive their masses and clarify their nature. Radial velocity curves were obtained from time resolved spectroscopy. The atmospher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017