On the geometry of multi-Dirac structures and Gerstenhaber algebras

نویسندگان

  • Joris Vankerschaver
  • Hiroaki Yoshimura
  • Melvin Leok
چکیده

In a companion paper, we introduced a notion of multi-Dirac structures, a graded version of Dirac structures, and we discussed their relevance for classical field theories. In the current paper we focus on the geometry of multi-Dirac structures. After recalling the basic definitions, we introduce a gradedmultiplication and amulti-Courant bracket on the space of sections of a multi-Dirac structure, so that the space of sections has the structure of a Gerstenhaber algebra. We then show that the graph of a k-form on a manifold gives rise to a multi-Dirac structure and also that this multi-Dirac structure is integrable if and only if the corresponding form is closed. Finally, we show that the multi-Courant bracket endows a subset of the ring of differential forms with a graded Poisson bracket, and we relate this bracket to some of the multisymplectic brackets found in the literature. © 2011 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gerstenhaber algebras and BV-algebras in Poisson geometry

The purpose of this paper is to establish an explicit correspondence between various geometric structures on a vector bundle with some well-known algebraic structures such as Gerstenhaber algebras and BV-algebras. Some applications are discussed. In particular, we found an explicit connection between the Koszul-Brylinski operator of a Poisson manifold and its modular class. As a consequence, we...

متن کامل

Some Observations on Dirac Measure-Preserving Transformations and their Results

Dirac measure is an important measure in many related branches to mathematics. The current paper characterizes measure-preserving transformations between two Dirac measure spaces or a Dirac measure space and a probability measure space. Also, it studies isomorphic Dirac measure spaces, equivalence Dirac measure algebras, and conjugate of Dirac measure spaces. The equivalence classes of a Dirac ...

متن کامل

Differential Gerstenhaber Algebras Associated to Nilpotent Algebras

This article provides a complete description of the differential Gerstenhaber algebras of all nilpotent complex structures on any real six-dimensional nilpotent algebra. As an application, we classify all pseudo-Kählerian complex structures on six-dimensional nilpotent algebras such that the differential Gerstenhaber algebra of its complex structure is quasi-isomorphic to that of its symplectic...

متن کامل

Constructions of Dgbv Algebras from Lie Algebras

We give some constructions of diierential Gerstenhaber-Batalin-Vilkovisky algebras from a class of Lie algebras. In our construction, we make use of the solutions to the classical Yang-Baxter equations, and ideas from Poisson geometry. A graded commutative algebra (A; ^) with a bracket ] of degree?1 is called a G-algebra (Gerstenhaber algebra) if: (a) (A1]; ]) is a Lie algebra, where A1] is A w...

متن کامل

Gerstenhaber Brackets for Skew Group Algebras

Hochschild cohomology governs deformations of algebras, and its graded Lie structure plays a vital role. We study this structure for the Hochschild cohomology of the skew group algebra formed by a finite group acting on an algebra by automorphisms. We examine the Gerstenhaber bracket with a view toward deformations and developing bracket formulas. We then focus on the linear group actions and p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011