Mechanisms of Sleep-Dependent Consolidation of Cortical Plasticity

نویسندگان

  • Sara J. Aton
  • Julie Seibt
  • Michelle Dumoulin
  • Sushil K. Jha
  • Nicholas Steinmetz
  • Tammi Coleman
  • Nirinjini Naidoo
  • Marcos G. Frank
چکیده

Sleep is thought to consolidate changes in synaptic strength, but the underlying mechanisms are unknown. We investigated the cellular events involved in this process during ocular dominance plasticity (ODP)-a canonical form of in vivo cortical plasticity triggered by monocular deprivation (MD) and consolidated by sleep via undetermined, activity-dependent mechanisms. We find that sleep consolidates ODP primarily by strengthening cortical responses to nondeprived eye stimulation. Consolidation is inhibited by reversible, intracortical antagonism of NMDA receptors (NMDARs) or cAMP-dependent protein kinase (PKA) during post-MD sleep. Consolidation is also associated with sleep-dependent increases in the activity of remodeling neurons and in the phosphorylation of proteins required for potentiation of glutamatergic synapses. These findings demonstrate that synaptic strengthening via NMDAR and PKA activity is a key step in sleep-dependent consolidation of ODP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein Synthesis during Sleep Consolidates Cortical Plasticity In Vivo

Sleep consolidates experience-dependent brain plasticity, but the precise cellular mechanisms mediating this process are unknown [1]. De novo cortical protein synthesis is one possible mechanism. In support of this hypothesis, sleep is associated with increased brain protein synthesis [2, 3] and transcription of messenger RNAs (mRNAs) involved in protein synthesis regulation [4, 5]. Protein syn...

متن کامل

Sleep on it: cortical reorganization after-the-fact.

Sleep can facilitate memory formation, but its role in cortical plasticity is poorly understood. A recent study found that sleep, following monocular deprivation (MD), facilitated cortical changes in ocular dominance. The magnitude of plasticity was similar to that observed after continued MD, and larger than that seen after sleep deprivation in darkness, suggesting that sleep per se enables me...

متن کامل

Translation regulation in sleep

Sleep improves cognition and is necessary for normal brain plasticity, but the precise cellular and molecular mechanisms mediating these effects are unknown. At the molecular level, experience-dependent synaptic plasticity triggers new gene and protein expression necessary for long-lasting changes in synaptic strength.(1) In particular, translation of mRNAs at remodeling synapses is emerging as...

متن کامل

The Roles of Cortical Slow Waves in Synaptic Plasticity and Memory Consolidation

Sleep plays important roles in sensory and motor memory consolidation. Sleep oscillations, reflecting neural population activity, involve the reactivation of learning-related neurons and regulate synaptic strength and, thereby affect memory consolidation. Among sleep oscillations, slow waves (0.5-4 Hz) are closely associated with memory consolidation. For example, slow-wave power is regulated i...

متن کامل

Extracellular signal-regulated kinase (ERK) activity during sleep consolidates cortical plasticity in vivo.

Ocular dominance plasticity (ODP) in the cat primary visual cortex (V1) is induced during waking by monocular deprivation (MD) and consolidated during subsequent sleep. The mechanisms underlying this process are incompletely understood. Extracellular signal-regulated kinase (ERK) is activated in V1 during sleep after MD, but it is unknown whether ERK activation during sleep is necessary for ODP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2009