Relativistic DNLS and Kaup–Newell Hierarchy

نویسنده

  • Oktay K. PASHAEV
چکیده

By the recursion operator of the Kaup–Newell hierarchy we construct the relativistic derivative NLS (RDNLS) equation and the corresponding Lax pair. In the nonrelativistic limit c→∞ it reduces to DNLS equation and preserves integrability at any order of relativistic corrections. The compact explicit representation of the linear problem for this equation becomes possible due to notions of the q-calculus with two bases, one of which is the recursion operator, and another one is the spectral parameter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-fold integrable hierarchy of nonholonomic deformation of the DNLS and the Lenells-Fokas equation

The concept of the nonholonomic deformation formulated recently for the AKNS family is extended to the Kaup-Newell class. Applying this construction we discover a novel mixed integrable hierarchy related to the deformed derivative nonlinear Schrödinger (DNLS) equation and found the exact soliton solutions exhibiting unusual accelerating motion for both its field and the perturbing functions. Ex...

متن کامل

A Coupled AKNS-Kaup-Newell Soliton Hierarchy

A coupled AKNS-Kaup-Newell hierarchy of systems of soliton equations is proposed in terms of hereditary symmetry operators resulted from Hamiltonian pairs. Zero curvature representations and tri-Hamiltonian structures are established for all coupled AKNS-Kaup-Newell systems in the hierarchy. Therefore all systems have infinitely many commuting symmetries and conservation laws. Two reductions of...

متن کامل

ar X iv : s ol v - in t / 9 60 80 03 v 1 6 A ug 1 99 6 Binary Nonlinearization of Lax pairs of Kaup - Newell Soliton Hierarchy

— Kaup-Newell soliton hierarchy is derived from a kind of Lax pairs different from the original ones. Binary nonlinearization procedure corresponding to the Bargmann symmetry constraint is carried out for those Lax pairs. The proposed Lax pairs together with adjoint Lax pairs are constrained as a hierarchy of commutative, finite dimensional integrable Hamiltonian systems in the Liouville sense,...

متن کامل

Integrable discretizations of derivative nonlinear Schrödinger equations

We propose integrable discretizations of derivative nonlinear Schrödinger (DNLS) equations such as the Kaup–Newell equation, the Chen–Lee–Liu equation and the Gerdjikov–Ivanov equation by constructing Lax pairs. The discrete DNLS systems admit the reduction of complex conjugation between two dependent variables and possess bi-Hamiltonian structure. Through transformations of variables and reduc...

متن کامل

Lie Algebraic Approach to Nonlinear Integrable Couplings of Evolution Type

Based on two higher-dimensional extensions of Lie algebras, three kinds of specific Lie algebras are introduced. Upon constructing proper loop algebras, six isospectral matrix spectral problems are presented and they yield nonlinear integrable couplings of the AblowitzKaup-Newell-Segur hierarchy, the Broer-Kaup hierarchy and the Kaup-Newell hierarchy. Especially, the reduced cases of the result...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017