Expression Profile of a Degenerating Neo-Y Chromosome in Drosophila
نویسنده
چکیده
BACKGROUND Gene-poor, degenerate Y chromosomes have evolved repeatedly from ordinary autosomes, but little is known about the processes that silence most genes on an evolving Y. RESULTS Here, I quantify relative expression levels of 58 gene pairs on the recently formed neo-sex chromosomes of Drosophila miranda, in order to test competing models of gene inactivation on its newly evolving Y chromosome (the neo-Y). Although the neo-Y of D. miranda still contains the majority of its original genes, most exhibit an accelerated rate of protein evolution, and many contain frameshift or nonsense mutations. All but three of these genes show significantly different levels of expression from the neo-X and neo-Y chromosome, with approximately 80% of all genes being expressed at lower levels from the neo-Y. The downregulation of many genes on the neo-Y appears to occur randomly, regardless of the level of accumulation of amino acid substitutions or whether the gene produces a functional protein. In addition, adjacent genes show considerable heterogeneity in levels of gene expression, an observation that argues against chromatin-structure-mediated changes in gene expression levels. CONCLUSIONS My results suggest that transcriptional inactivation of degenerating Y linked genes is an accidental by-product of mutation accumulation, and not driven by selection to either maintain expression at functional loci or downregulate maladapted genes from the neo-Y. Thus, most mutations observed on the neo-Y are likely to have deleterious effects on fitness and accumulate as a result of the reduced efficiency of natural selection on a nonrecombining chromosome, rather than neutrally or adaptively.
منابع مشابه
Muller's ratchet and the degeneration of the Drosophila miranda neo-Y chromosome.
Since its formation about 1.75 million years ago, the Drosophila miranda neo-Y chromosome has undergone a rapid process of degeneration, having lost approximately half of the genes that it originally contained. Using estimates of mutation rates and selection coefficients for loss-of-function mutations, we show that the high rate of accumulation of these mutations can largely be explained by Mul...
متن کاملA duplication including the Y allele of Lcp2 and the TRIM retrotransposon at the Lcp locus on the degenerating neo-Y chromosome of Drosophila miranda: molecular structure and mechanisms by which it may have arisen.
Evolutionary changes during the process of sex chromosome differentiation in Drosophila miranda are associated with massive DNA rearrangements. Comparing the DNA structure of the larval cuticle protein (Lcp) region from the X2 and neo-Y chromosome pair, we observed insertions, deletions and a large duplication at the neo-Y chromosomal locus. The duplication encompasses a complete copy of the ne...
متن کاملNonrandom Gene Loss from the Drosophila miranda Neo-Y Chromosome
A lack of recombination leads to the degeneration of an evolving Y chromosome. However, it is not known whether gene loss is largely a random process and primarily driven by the order in which mutations occur or whether certain categories of genes are lost less quickly than others; the latter would imply that selection counteracts the degeneration of Y chromosomes to some extent. In this study,...
متن کاملThe Amylase gene cluster on the evolving sex chromosomes of Drosophila miranda.
On the basis of chromosomal homology, the Amylase gene cluster in Drosophila miranda must be located on the secondary sex chromosome pair, neo-X (X2) and neo-Y, but is autosomally inherited in all other Drosophila species. Genetic evidence indicates no active amylase on the neo-Y chromosome and the X2-chromosomal locus already shows dosage compensation. Several lines of evidence strongly sugges...
متن کاملEvolution of amino-acid sequences and codon usage on the Drosophila miranda neo-sex chromosomes.
We have studied patterns of DNA sequence variation and evolution for 22 genes located on the neo-X and neo-Y chromosomes of Drosophila miranda. As found previously, nucleotide site diversity is greatly reduced on the neo-Y chromosome, with a severely distorted frequency spectrum. There is also an accelerated rate of amino-acid sequence evolution on the neo-Y chromosome. Comparisons of nonsynony...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 16 شماره
صفحات -
تاریخ انتشار 2006