A weak condition for the convexity of tensor-product Bézier and B-spline surfaces

نویسنده

  • Michael S. Floater
چکیده

§

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tensor-product monotonicity preservation

The preservation of surface shape is important in geometric modelling and approximation theory. In geometric modelling one would like to manipulate the shape of the surface being modelled by the simpler task of manipulating the control points. In scattered data approximation one might wish to approximate bivariate data sampled from a function with a shape property by a spline function sharing t...

متن کامل

Convexity conditions for parametric tensor-product B-spline surfaces

This paper provides four alternative suucient condition-sets, ensuring that a patch of a parametric tensor-product B-spline surface is locally convex. These conditions are at most tri-quadratic with respect to the control points of the surface.

متن کامل

TENSION QUARTIC TRIGONOMETRIC BÉZIER CURVES PRESERVING INTERPOLATION CURVES SHAPE

In this paper simple quartic trigonometric polynomial blending functions, with a tensionparameter, are presented. These type of functions are useful for constructing trigonometricB´ezier curves and surfaces, they can be applied to construct continuous shape preservinginterpolation spline curves with shape parameters. To better visualize objects and graphics atension parameter is included. In th...

متن کامل

Functional networks for B-spline surface reconstruction

Recently, a new extension of the standard neural networks, the so-called functional networks, has been described [E. Castillo, Functional networks, Neural Process. Lett. 7 (1998) 151–159]. This approach has been successfully applied to the reconstruction of a surface from a given set of 3D data points assumed to lie on unknown Bézier [A. Iglesias, A. Gálvez, Applying functional networks to CAGD...

متن کامل

Free-Form Surfaces of degree ( )

This paper introduces new techniques for modeling low degree, smooth freeform surfaces of unrestricted patch layout. In particular, surfaces that are after reparametrization can be built from tensor-product Bézier or spline patches of degree ( ) and (3,d+2); at extraordinary points, these surfaces have the flexibility of splines of total degree . The particular choice, , yields more than vector...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adv. Comput. Math.

دوره 2  شماره 

صفحات  -

تاریخ انتشار 1994