Sulfur transfer and activation by ubiquitin-like modifier system Uba4•Urm1 link protein urmylation and tRNA thiolation in yeast

نویسندگان

  • André Jüdes
  • Alexander Bruch
  • Roland Klassen
  • Mark Helm
  • Raffael Schaffrath
چکیده

Urm1 is a unique dual-function member of the ubiquitin protein family and conserved from yeast to man. It acts both as a protein modifier in ubiquitin-like urmylation and as a sulfur donor for tRNA thiolation, which in concert with the Elongator pathway forms 5-methoxy-carbonyl-methyl-2-thio (mcm5s2) modified wobble uridines (U34) in anticodons. Using Saccharomyces cerevisiae as a model to study a relationship between these two functions, we examined whether cultivation temperature and sulfur supply previously implicated in the tRNA thiolation branch of the URM1 pathway also contribute to proper urmylation. Monitoring Urm1 conjugation, we found urmylation of the peroxiredoxin Ahp1 is suppressed either at elevated cultivation temperatures or under sulfur starvation. In line with this, mutants with sulfur transfer defects that are linked to enzymes (Tum1, Uba4) required for Urm1 activation by thiocarboxylation (Urm1-COSH) were found to maintain drastically reduced levels of Ahp1 urmylation and mcm5s2U34 modification. Moreover, as revealed by site specific mutagenesis, the S-transfer rhodanese domain (RHD) in the E1-like activator (Uba4) crucial for Urm1-COSH formation is critical but not essential for protein urmylation and tRNA thiolation. In sum, sulfur supply, transfer and activation chemically link protein urmylation and tRNA thiolation. These are features that distinguish the ubiquitin-like modifier system Uba4•Urm1 from canonical ubiquitin family members and will help elucidate whether, in addition to their mechanistic links, the protein and tRNA modification branches of the URM1 pathway may also relate in function to one another.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Urmylation and tRNA thiolation functions of ubiquitin-like Uba4·Urm1 systems are conserved from yeast to man.

The ubiquitin-like protein Urm1 from budding yeast and its E1-like activator Uba4 have dual roles in protein urmylation and tRNA thiolation pathways. To study whether these are conserved among eukaryotes, we used gene shuffles to replace the yeast proteins by their human counterparts, hURM1 and hUBA4/MOCS3. As judged from biochemical and genetical assays, hURM1 and hUBA4 are functional in yeast...

متن کامل

Mechanistic characterization of the sulfur-relay system for eukaryotic 2-thiouridine biogenesis at tRNA wobble positions

The wobble modification in tRNAs, 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U), is required for the proper decoding of NNR codons in eukaryotes. The 2-thio group confers conformational rigidity of mcm(5)s(2)U by largely fixing the C3'-endo ribose puckering, ensuring stable and accurate codon-anticodon pairing. We have identified five genes in Saccharomyces cerevisiae, YIL008w (URM1), YHR...

متن کامل

Urm1 at the crossroad of modifications

The ubiquitin-like protein Urm1 can be covalently conjugated to other proteins, such as the yeast thioredoxin peroxidase protein Ahp1p, through a mechanism involving the ubiquitin E1-like enzyme Uba4. Recent findings have revealed a second function of Urm1 as a sulphur carrier in the thiolation of eukaryotic cytoplasmic transfer RNAs (tRNAs). Interestingly, this new role of Urm1 is similar to t...

متن کامل

A proteomics approach to identify targets of the ubiquitin-like molecule Urm1 in Drosophila melanogaster

By covalently conjugating to target proteins, ubiquitin-like modifiers (UBLs) act as important regulators of target protein localization and activity, thereby playing a critical role in the orchestration of cellular biology. The most ancient and one of the least studied UBLs is Urm1, a dual-function protein that in parallel to performing similar functions as its prokaryotic ancestors in tRNA mo...

متن کامل

Urm1 couples sulfur transfer to ubiquitin-like protein function in oxidative stress.

T he posttranslational modification of proteins with ubiquitin and ubiquitin-like proteins (collectively referred to as UBLs) has emerged as a major regulatory mechanism in eukaryotes. UBLs are characterized by a core β-grasp fold and an essential carboxy terminal glycine within a di-glycine motif (1). These features are also found in several prokaryotic sulfur carriers, suggestive of an evolut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2016