Differentiation of antiinflammatory and antitumorigenic properties of stabilized enantiomers of thalidomide analogs.
نویسندگان
چکیده
Therapeutics developed and sold as racemates can exhibit a limited therapeutic index because of side effects resulting from the undesired enantiomer (distomer) and/or its metabolites, which at times, forces researchers to abandon valuable scaffolds. Therefore, most chiral drugs are developed as single enantiomers. Unfortunately, the development of some chirally pure drug molecules is hampered by rapid in vivo racemization. The class of compounds known as immunomodulatory drugs derived from thalidomide is developed and sold as racemates because of racemization at the chiral center of the 3-aminoglutarimide moiety. Herein, we show that replacement of the exchangeable hydrogen at the chiral center with deuterium allows the stabilization and testing of individual enantiomers for two thalidomide analogs, including CC-122, a compound currently in human clinical trials for hematological cancers and solid tumors. Using "deuterium-enabled chiral switching" (DECS), in vitro antiinflammatory differences of up to 20-fold are observed between the deuterium-stabilized enantiomers. In vivo, the exposure is dramatically increased for each enantiomer while they retain similar pharmacokinetics. Furthermore, the single deuterated enantiomers related to CC-122 exhibit profoundly different in vivo responses in an NCI-H929 myeloma xenograft model. The (-)-deuterated enantiomer is antitumorigenic, whereas the (+)-deuterated enantiomer has little to no effect on tumor growth. The ability to stabilize and differentiate enantiomers by DECS opens up a vast window of opportunity to characterize the class effects of thalidomide analogs and improve on the therapeutic promise of other racemic compounds, including the development of safer therapeutics and the discovery of new mechanisms and clinical applications for existing therapeutics.
منابع مشابه
A new method for determination of both thalidomide enantiomers using HPLC systems.
Although thalidomide was withdrawn due to teratogenicity and neuropathy, there is now growing clinical interest in this compound because of its immunomodulatory and anti-angiogenic properties. In 1998, thalidomide was approved by the U.S. Food and Drug Administration for the treatment of erythema nodosum leprosum (ENL), an inflammatory complication of Hansen's disease, through a restricted-use ...
متن کاملIn vivo screening and discovery of novel candidate thalidomide analogs in the zebrafish embryo and chicken embryo model systems
Thalidomide, a drug known for its teratogenic side-effects, is used successfully to treat a variety of clinical conditions including leprosy and multiple myeloma. Intense efforts are underway to synthesize and identify safer, clinically relevant analogs. Here, we conduct a preliminary in vivo screen of a library of new thalidomide analogs to determine which agents demonstrate activity, and desc...
متن کاملInhibition of Uterine Contractility by Thalidomide Analogs via Phosphodiesterase-4 Inhibition and Calcium Entry Blockade.
Uterine relaxation is crucial during preterm labor. Phosphodiesterase-4 (PDE-4) inhibitors have been proposed as tocolytics. Some thalidomide analogs are PDE-4 inhibitors. The aim of this study was to assess the uterus-relaxant properties of two thalidomide analogs, methyl 3-(4-nitrophthalimido)-3-(3,4-dimethoxyphenyl)-propanoate (4NO2PDPMe) and methyl 3-(4-aminophthalimido)-3-(3,4-dimethoxyphe...
متن کاملAntitumorigenic Evaluation of Thalidomide Alone and in Combination with Cisplatin in DBA2/J Mice
Thalidomide's reported ability to inhibit angiogenesis has led to clinical trials determining its effectiveness in combating various types of cancer. This study explored thalidomide's antitumorigenic potential when administered alone and in combination with cisplatin to DBA2/J mice whose tumors were induced by murine erythroleukemic cells. Thalidomide treatment alone produced no significant inh...
متن کاملIn silico analysis of enantioselective binding of immunomodulatory imide drugs to cereblon
BACKGROUND Thalidomide and its analogs, lenalidomide and pomalidomide (referred to as immunomodulatory imide drugs or IMiDs) have been known to treat multiple myeloma and other hematologic malignancies as well as to cause teratogenicity. Recently the protein cereblon was identified as the primary target of IMiDs, and crystallographic studies of the cereblon-IMiDs complex showed strong enantiose...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 19 شماره
صفحات -
تاریخ انتشار 2015