Centrality Measures in Networks

نویسندگان

  • Francis Bloch
  • Matthew O. Jackson
  • Pietro Tebaldi
چکیده

We show that although the prominent centrality measures in network analysis make use of different information about nodes’ positions, they all process that information in a very restrictive and identical way. They all spring from a common family that are characterized by the same axioms. In particular, they are all based on a additively separable and linear treatment of a statistic that captures a node’s position in the network. Using such statistics on nodes’ positions, we also characterize networks on which centrality measures all agree. JEL Classification Codes: D85, D13, L14, O12, Z13, C65

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Influence of Location on Nodes’ Centrality in Location-Based Social Networks

Nowadays, due to the widespread use of social networks, they can be used as a convenient, low-cost, and affordable tool for disseminating all kinds of information and data among the massive users of these networks. Issues such as marketing for new products, informing the public in critical situations, and disseminating medical and technological innovations are topics that have been considered b...

متن کامل

A Combination Method of Centrality Measures and Biological Properties to Improve Detection of Protein Complexes in Weighted PPI Networks

Introduction: In protein-protein interaction networks (PPINs), a complex is a group of proteins that allows a biological process to take place. The correct identification of complexes can help better understanding of the function of cells used for therapeutic purposes, such as drug discoveries. One of the common methods for identifying complexes in the PPINs is clustering, but this study aimed ...

متن کامل

A Fast Approach to the Detection of All-Purpose Hubs in Complex Networks with Chemical Applications

A novel algorithm for the fast detection of hubs in chemical networks is presented. The algorithm identifies a set of nodes in the network as most significant, aimed to be the most effective points of distribution for fast, widespread coverage throughout the system. We show that our hubs have in general greater closeness centrality and betweenness centrality than vertices with maximal degree, w...

متن کامل

A Combination Method of Centrality Measures and Biological Properties to Improve Detection of Protein Complexes in Weighted PPI Networks

Introduction: In protein-protein interaction networks (PPINs), a complex is a group of proteins that allows a biological process to take place. The correct identification of complexes can help better understanding of the function of cells used for therapeutic purposes, such as drug discoveries. One of the common methods for identifying complexes in the PPINs is clustering, but this study aimed ...

متن کامل

A Critical Review of Centrality Measures in Social Networks

Social networks are currently gaining increasing impact especially in the light of the ongoing growth of web-based services like facebook.com. A central challenge for the social network analysis is the identification of key persons within a social network. In this context, the article aims at presenting the current state of research on centrality measures for social networks. In view of highly ...

متن کامل

Correlations between Centrality Measures for Mobile Ad hoc Networks

The author conducts an extensive correlation coefficient analysis of four prominent centrality measures for mobile ad hoc networks. The centrality measures considered are the degree-based degree centrality and eigenvector centrality, and the shortest path-based betweenness centrality and closeness centrality. The author evaluates the correlation coefficient between any two of the above four cen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1608.05845  شماره 

صفحات  -

تاریخ انتشار 2016