Sigma-2 receptor ligands QSAR model dataset

نویسندگان

  • Antonio Rescifina
  • Giuseppe Floresta
  • Agostino Marrazzo
  • Carmela Parenti
  • Orazio Prezzavento
  • Giovanni Nastasi
  • Maria Dichiara
  • Emanuele Amata
چکیده

The data have been obtained from the Sigma-2 Receptor Selective Ligands Database (S2RSLDB) and refined according to the QSAR requirements. These data provide information about a set of 548 Sigma-2 (σ2) receptor ligands selective over Sigma-1 (σ1) receptor. The development of the QSAR model has been undertaken with the use of CORAL software using SMILES, molecular graphs and hybrid descriptors (SMILES and graph together). Data here reported include the regression for σ2 receptor pKi QSAR models. The QSAR model was also employed to predict the σ2 receptor pKi values of the FDA approved drugs that are herewith included.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Modeling Studies on Pyridazinone and Pyridinone as Hcv-1 Ns5b Polymerase Inhibitors

Pyridazinone and pyridinone analogs were reported as a novel class of inhibitors of genotype 1 HCV NS5B polymerase. Here we report a receptor based 3D QSAR (quantitative structure-activity relationship) for set of 100 molecules. Receptor binding conformation of the molecule gives an added advantage to understand ligand receptor interactions required for bioactivity. Induced-fit docking approach...

متن کامل

QSAR studies and application of genetic algorithm - multiple linear regressions in prediction of novel p2x7 receptor antagonists’ activity

Quantitative structure-activity relationship (QSAR) models were employed for prediction the activity of P2X7 receptor antagonists. A data set consisted of 50 purine derivatives was utilized in the model construction where 40 and 10 of these compounds were in the training and test sets respectively. A suitable group of calculated molecular descriptors was selected by employing stepwise multiple ...

متن کامل

Local Intersection Volume (LIV) Descriptors: 3D-QSAR Models for PGI2 Receptor Ligands

Prostaciclina I 2 inibe a agregação plaquetária pela interação com um receptor específico de membrana. Neste trabalho, desenvolvemos modelos de QSAR-3D para uma série de compostos heterocíclicos aromáticos usando como descritor o volume de interseção local. Os modelos obtidos podem ser aplicados no desenvolvimento de novos ligantes de receptor da PGI 2 com potencial atividade anti-agregante pla...

متن کامل

Rationalization of Physicochemical and Structural Requirement of Some Substituted 5-(Biphenyl-4-ylmethyl)Pyrazole as Angiotensin II Receptor Antagonist: A QSAR Approach

      A series of angiotensin II (A II) receptor antagonist of some substituted 5-(biphenyl-4-ylmethyl) pyrazole were subjected to QSAR analysis using Hansch and Fujita-Ban model, by using combination of thermodynamic, electronic, spatial descriptor and presence or absence of substituent respectively. Several QSAR model were obtained using stepwise regression analysis. Two models from both the ...

متن کامل

The receptor-dependent LQTA-QSAR: application to a set of trypanothione reductase inhibitors

A new Receptor-Dependent LQTA-QSAR approach, RD-LQTA-QSAR, is proposed as a new 4D-QSAR method. It is an evolution of receptor independent LQTA-QSAR. This approach uses the free GROMACS package to carry out molecular dynamics simulations and generates a conformational ensemble profile for each compound. Such an ensemble is used to build molecular interaction field-based QSAR models, as in CoMFA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017