A Geometric-Structure Theory for Maximally Random Jammed Packings
نویسندگان
چکیده
Maximally random jammed (MRJ) particle packings can be viewed as prototypical glasses in that they are maximally disordered while simultaneously being mechanically rigid. The prediction of the MRJ packing density ϕMRJ, among other packing properties of frictionless particles, still poses many theoretical challenges, even for congruent spheres or disks. Using the geometric-structure approach, we derive for the first time a highly accurate formula for MRJ densities for a very wide class of two-dimensional frictionless packings, namely, binary convex superdisks, with shapes that continuously interpolate between circles and squares. By incorporating specific attributes of MRJ states and a novel organizing principle, our formula yields predictions of ϕMRJ that are in excellent agreement with corresponding computer-simulation estimates in almost the entire α-x plane with semi-axis ratio α and small-particle relative number concentration x. Importantly, in the monodisperse circle limit, the predicted ϕMRJ = 0.834 agrees very well with the very recently numerically discovered MRJ density of 0.827, which distinguishes it from high-density "random-close packing" polycrystalline states and hence provides a stringent test on the theory. Similarly, for non-circular monodisperse superdisks, we predict MRJ states with densities that are appreciably smaller than is conventionally thought to be achievable by standard packing protocols.
منابع مشابه
Jammed Hard-Particle Packings: From Kepler to Bernal and Beyond
Understanding the characteristics of jammed particle packings provides basic insights into the structure and bulk properties of crystals, glasses, and granular media, and into selected aspects of biological systems. This review describes the diversity of jammed configurations attainable by frictionless convex nonoverlapping (hard) particles in Euclidean spaces and for that purpose it stresses i...
متن کاملExistence of isostatic, maximally random jammed monodisperse hard-disk packings.
We generate jammed packings of monodisperse circular hard-disks in two dimensions using the Torquato-Jiao sequential linear programming algorithm. The packings display a wide diversity of packing fractions, average coordination numbers, and order as measured by standard scalar order metrics. This geometric-structure approach enables us to show the existence of relatively large maximally random ...
متن کاملHyperuniformity, quasi-long-range correlations, and void-space constraints in maximally random jammed particle packings. I. Polydisperse spheres.
Hyperuniform many-particle distributions possess a local number variance that grows more slowly than the volume of an observation window, implying that the local density is effectively homogeneous beyond a few characteristic length scales. Previous work on maximally random strictly jammed sphere packings in three dimensions has shown that these systems are hyperuniform and possess unusual quasi...
متن کاملRobust algorithm to generate a diverse class of dense disordered and ordered sphere packings via linear programming.
We have formulated the problem of generating dense packings of nonoverlapping, nontiling nonspherical particles within an adaptive fundamental cell subject to periodic boundary conditions as an optimization problem called the adaptive-shrinking cell (ASC) formulation [S. Torquato and Y. Jiao, Phys. Rev. E 80, 041104 (2009)]. Because the objective function and impenetrability constraints can be ...
متن کاملDiversity of order and densities in jammed hard-particle packings.
Recently the conventional notion of random close packing has been supplanted by the more appropriate concept of the maximally random jammed (MRJ) state. This inevitably leads to the necessity of distinguishing the MRJ state among the entire collection of jammed packings. While the ideal method of addressing this question would be to enumerate and classify all possible jammed hard-sphere configu...
متن کامل