Pistillata--duplications as a mode for floral diversification in (Basal) asterids.
نویسندگان
چکیده
Basal asterid families, and to a lesser extent the asterids as a whole, are characterized by a high variation in petal and stamen morphology. Moreover, the stamen number, the adnation of stamens to petals, and the degree of sympetaly vary considerably among basal asterid taxa. The B group genes, members of the APETALA3 (AP3) and PISTILLATA (PI) gene lineages, have been shown to specify petal and stamen identities in several core eudicot species. Duplicate genes in these lineages have been shown in some cases to have diversified in their function; for instance in Petunia, a PI paralog is required for the fusion of stamens to the corolla tube, illustrating that such genes belonging to this lineage are not just involved in specifying the identity of the stamens and petals but can also specify novel floral morphologies. This motivated us to study the duplication history of class B genes throughout asterid lineages, which comprise approximately one-third of all flowering plants. The evolutionary history of the PI gene subfamily indicates that the two genes in Petunia result from an ancient duplication event, coinciding with the origin of core asterids. A second duplication event occurred before the speciation of basal asterid Ericales families. These and other duplications in the PI lineage are not correlated with duplications in the AP3 lineage. To understand the molecular evolution of the Ericales PI genes after duplication, we have described their expression patterns using reverse transcription polymerase chain reaction and in situ hybridization, reconstructed how selection shaped their protein sequences and tested their protein interaction specificity with other class B proteins. We find that after duplication, PI paralogs have acquired multiple different expression patterns and negative selective pressure on their codons is relaxed, whereas substitutions in sites putatively involved in protein-protein interactions show positive selection, allowing for a change in the interaction behavior of the PI paralogs after duplication. Together, these observations suggest that the asterids have preferentially recruited PI duplicate genes to diverse and potentially novel roles in asterid flower development.
منابع مشابه
The floral genome: an evolutionary history of gene duplication and shifting patterns of gene expression.
Through multifaceted genome-scale research involving phylogenomics, targeted gene surveys, and gene expression analyses in diverse basal lineages of angiosperms, our studies provide insights into the most recent common ancestor of all extant flowering plants. MADS-box gene duplications have played an important role in the origin and diversification of angiosperms. Furthermore, early angiosperms...
متن کاملDuplications in Cyc-like Genes from Dipsacales Correlate with Floral Form
Flower symmetry is of special interest in understanding the evolution and ecology of angiosperms. Evidence from the Antirrhineae (within the lamiid clade of Asteridae) indicates that several TCP gene family transcription factors, especially CYCLOIDEA (CYC), play a role in specifying dorsal identity in the corolla and androecium of monosymmetric (bilateral) flowers. We examine the evolution of t...
متن کاملFunctional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events.
B-class MADS-box genes have been shown to be the key regulators of petal and stamen specification in several eudicot model species such as Arabidopsis thaliana, Antirrhinum majus, and Petunia hybrida. Orthologs of these genes have been found across angiosperms and gymnosperms, and it is thought that the basic regulatory function of B proteins is conserved in seed plant lineages. The evolution o...
متن کاملEvolution of plant MADS box transcription factors: evidence for shifts in selection associated with early angiosperm diversification and concerted gene duplications.
Phylogenomic analyses show that gene and genome duplication events have led to the diversification of transcription factor gene families throughout the evolutionary history of land plants and that gene duplications have played an important role in shaping regulatory networks influencing key phenotypic characters including floral development and flowering time. A molecular evolutionary investiga...
متن کاملThe Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals.
PISTILLATA is a B-class floral organ identity gene required for the normal development of petals and stamens in Arabidopsis. PISTILLATA expression is induced in the stage 3 flowers (early expression) and is maintained until anthesis (late expression). To explore in more detail the developmentally regulated gene expression of PISTILLATA, we have analyzed the PISTILLATA promoter using uidA (beta)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 26 11 شماره
صفحات -
تاریخ انتشار 2009