Significant decomposition of riverine humic-rich DOC by marine but not estuarine bacteria assessed in sequential chemostat experiments
نویسندگان
چکیده
Humic substances (HS) are the most abundant natural organic compounds in aquatic and terrestrial environments. However, the bacterial degradation of HS in the estuarine salinity gradient and in coastal regions as a sink for HS, entering the open sea, is not well understood. Therefore, we studied the bacterial degradation of humic-rich dissolved organic carbon (DOC) at increasing salinities between 1 and 30 in an estuary of the southern North Sea (Weser). Three-stage chemostats, inoculated with natural brackish (salinity 5 and 15) and coastal marine (salinity 30) bacterial communities fed 0.1 μm filtered natural humic-rich freshwater adjusted to the respective salinity, were run for up to 51 d at dilution rates of 0.1 and 0.15 d–1. DOC concentrations, bacterial numbers, and production were assessed in each stage over the incubation time. In addition, the fulvic acid (FA), humic acid (HA), and hydrophilic acid (HPA) fractions of the HS were determined by XAD fractionation. At a salinity of 30, the humic-rich DOC was decomposed to more than 60%, whereas in the other 2 experiments at salinities of 15 and 5, no detectable decomposition occurred. At the highest salinity condition, all 3 HS fractions were reduced substantially, whereas at a salinity of 5, only the HA and HPA fractions decreased, and at 15, only the HA fraction decreased. In the latter experiments, concentrations of the FA and HPA fractions in some chemostat stages increased despite unchanged DOC concentration. Our study provides evidence that the main bacterial decomposition, i.e. conversion into bacterial biomass and remineralization, of humic-rich DOC occurs in the polyhaline estuarine region and that at lower salinities, only some transformation of the humic fractions takes place, modifying the adsorptive properties of the HS, but no bacterial DOC decomposition occurs. The sequential chemostats were a useful approach to study the complex process of bacterial HS decomposition.
منابع مشابه
Response of Bacterial Metabolic Activity to Riverine Dissolved Organic Carbon and Exogenous Viruses in Estuarine and Coastal Waters: Implications for CO2 Emission
A cross-transplant experiment between estuarine water and seawater was conducted to examine the response of bacterial metabolic activity to riverine dissolved organic carbon (DOC) input under virus-rich and virus-free conditions, as well as to exogenous viruses. Riverine DOC input increased bacterial production significantly, but not bacterial respiration (BR) because of its high lability. The ...
متن کاملEffect of organic matter on estuarine flocculation: a laboratory study using montmorillonite, humic acid, xanthan gum, guar gum and natural estuarine flocs
BACKGROUND Riverine particles undergo a rapid transformation when they reach estuaries. The rapid succession of hydrodynamic and biogeochemical regimes forces the particles to flocculate, settle and enter the sediment pool. The rates and magnitudes of flocculation depend on the nature of the particles which are primarily affected by the types and quantities of organic matter (OM). Meanwhile, th...
متن کاملStarvation Conditions Effects on Carbohydrate Metabolism of Marine Bacteria
In the coastal shorelines terrestrial organic materials transported by river runoff represent an important material source to the ocean and is estimated that 0.4×1015 g yr−1 organic carbon is discharged to ocean by land flows or rivers (Meybeck, 1982, He et al, 2010). This amount of riverine organic carbon is sufficient to support the entire organic carbon turnover in the ocean (Williams and Dr...
متن کاملLong-term photochemical and microbial decomposition of wetland-derived dissolved organic matter with alteration
We investigated the long-term photochemical and microbial decomposition of biologically recalcitrant humiclike dissolved organic matter (DOM) leached from a vascular wetland plant, the common rush (Juncus effusus). Although the leachate would have been characterized as biologically recalcitrant by short-term (,14 d) bioassays, microbes decomposed 51% of its organic carbon in 898 d with a first-...
متن کاملDissolved humic substances of vascular plant origin in a coastal marine environment
Bacterial decomposition of vascular plant detritus in coastal wetlands results in the conversion of particulate organic matter to dissolved form and causes the release of humic substances into the bulk dissolved organic carbon (DOC) pool. WC found that 34% of the DOC accumulating during degradation of salt marsh grass (Spartina alternif7oru) from coastal wetlands of the southeastern U.S. fits t...
متن کامل