Sirolimus oral absorption in rats is increased by ketoconazole but is not affected by D-alpha-tocopheryl poly(ethylene glycol 1000) succinate.

نویسندگان

  • Vincent J Wacher
  • Jeffrey A Silverman
  • Susan Wong
  • Paulina Tran-Tau
  • Amy O Chan
  • Anne Chai
  • Xiang-Qing Yu
  • Daniel O'Mahony
  • Zeibun Ramtoola
چکیده

The contributions of cytochrome P450 3A (CYP3A) and P-glycoprotein to sirolimus oral bioavailability in rats were evaluated by coadministration of sirolimus (Rapamune) with the CYP3A inhibitor ketoconazole or the P-glycoprotein inhibitor D-alpha-tocopheryl poly(ethylene glycol 1000) succinate (TPGS). Groups of six male Sprague-Dawley rats (250-300 g) were administered Rapamune (1 mg/kg) by oral gavage, alone and with ketoconazole (30 mg/kg) or TPGS (50 mg/kg). Sirolimus levels were measured in whole blood over a 6-h time course. Sirolimus C(max) (6.6 +/- 1.6 versus 26 +/- 7 ng/ml) and area under the concentration versus time curve from 0 to 6 h (AUC(0-6)) (22 +/- 7 versus 105 +/- 27 ng. h/ml) were increased 3- to 5-fold by ketoconazole. Median T(max) (1.5-2 h) was unchanged. TPGS had no effect on sirolimus absorption. The interaction of sirolimus with P-glycoprotein was also evaluated in vitro using HCT-8 and Caco-2 cell monolayers. Consistent with published reports, sirolimus was a good inhibitor of P-glycoprotein, inhibiting polarized basolateral-to-apical flux of rhodamine 123 with an IC(50) of 0.625 to 1.25 microM (cyclosporine caused >80% inhibition at 5 microM). Sirolimus did not demonstrate significant polarized flux in either direction using the same monolayers (basolateral-to-apical flux was <2 times the apical-to-basolateral). Moreover, sirolimus flux was not impacted by cyclosporine, suggesting that it does not undergo P-glycoprotein-mediated transport in this system. The lack of significant sirolimus transport by P-glycoprotein may, in part, explain the lack of a TPGS effect on sirolimus absorption in rats.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: enhanced intestinal absorption and lymphatic uptake

Docetaxel is a potent anticancer drug, but development of an oral formulation has been hindered mainly due to its poor oral bioavailability. In this study, solid lipid nanoparticles (SLNs) surface-modified by Tween 80 or D-alpha-tocopheryl poly(ethylene glycol 1000) succinate (TPGS 1000) were prepared and evaluated in terms of their feasibility as oral delivery systems for docetaxel. Tween 80-e...

متن کامل

Serum total cholesterol, high-density lipoprotein-cholesterol and triglyceride concentrations in lambs following supplementation with various forms of tocopherol.

A 61-d study involving 40 crossbred lambs evaluated the effect of various forms of tocopherol provided daily in equimolar amounts on total cholesterol, high-density lipoprotein-cholesterol and triglyceride concentrations in the serum of lambs. Thirty-five lambs were allotted to 7 treatment groups of 5 animals each, supplemented with 300 mg tocopherol either as: 1) DL-alpha-tocopheryl acetate; 2...

متن کامل

Preparation and evaluation in vitro and in vivo of docetaxel loaded mixed micelles for oral administration.

A mixed micelle that comprised of monomethylol poly(ethylene glycol)-poly(D,L-lactic acid) (MPP), D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and stearic acid grafted chitosan oligosaccharide(CSO-SA) copolymers was developed to enhance the oral absorption of docetaxel (DTX). DTX-loaded MPP/TPGS/CSO-SA mixed polymeric micelles (MPMs) were prepared with thin film hydration method and...

متن کامل

Novel PLGA-based nanoparticles for the oral delivery of insulin

BACKGROUND Insulin is the drug therapy for patients with insulin-dependent diabetes mellitus. A number of attempts have been made in the past to overcome the problems associated with the oral delivery of insulin, but with little success. Orally administered insulin has encountered with many difficulties such as rapid degradation and poor intestinal absorption. The potential use of D-α-tocophero...

متن کامل

Nanoparticles of Poly(Lactide-Co-Glycolide)-d-a-Tocopheryl Polyethylene Glycol 1000 Succinate Random Copolymer for Cancer Treatment

Cancer is the leading cause of death worldwide. Nanomaterials and nanotechnologies could provide potential solutions. In this research, a novel biodegradable poly(lactide-co-glycolide)-d-a-tocopheryl polyethylene glycol 1000 succinate (PLGA-TPGS) random copolymer was synthesized from lactide, glycolide and d-a-tocopheryl polyethylene glycol 1000 succinate (TPGS) by ring-opening polymerization u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 303 1  شماره 

صفحات  -

تاریخ انتشار 2002