Efficient importance sampling maximum likelihood estimation of stochastic differential equations

نویسندگان

  • S. Pastorello
  • E. Rossi
چکیده

This paper considers ML estimation of a diffusion process observed discretely. Since the exact loglikelihood is generally not available, it must be approximated. We review the most efficient approaches in the literature, and point to some drawbacks. We propose to approximate the loglikelihood using the EIS strategy (Richard and Zhang, 1998), and detail its implementation for univariate homogeneous processes. Some Monte Carlo experiments evaluate its performance against an alternative IS strategy (Durham and Gallant, 2002), showing that EIS is at least equivalent, if not superior, while allowing a greater flexibility needed when examining more complicated models. JEL codes: C13, C15, C22

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Likelihood Estimation for Stochastic Differential Equations Using Sequential Gaussian-Process-Based Optimization

Stochastic Differential Equations (SDEs) are used as statistical models in many disciplines. However, intractable likelihood functions for SDEs make inference challenging, and we need to resort to simulation-based techniques to estimate and maximize the likelihood function. While importance sampling methods have allowed for the accurate evaluation of likelihoods at fixed parameter values, there...

متن کامل

A penalized simulated maximum likelihood approach in parameter estimation for stochastic differential equations

We consider the problem of estimating parameters of stochastic differential equations (SDEs) with discrete-time observations that are either completely or partially observed. The transition density between two observations is generally unknown. We propose an importance sampling approach with an auxiliary parameter which improves approximation of the transition density. We embed the auxiliary im...

متن کامل

An efficient method for maximum likelihood estimation of a stochastic volatility model

In this paper an efficient, simulation-based, maximum likelihood (ML) method is proposed for estimating Taylor’s stochastic volatility (SV) model. The new method is based on the second order Taylor approximation to the integrand. The approximation enables us to transfer the numerical problem in the Laplace approximation and that in importance sampling into the problem of inverting two high dime...

متن کامل

Parameter estimation in nonlinear stochastic dierential equations

We discuss the problem of parameter estimation in nonlinear stochastic di€erential equations (SDEs) based on sampled time series. A central message from the theory of integrating SDEs is that there exist in general two time scales, i.e. that of integrating these equations and that of sampling. We argue that therefore, maximum likelihood estimation is computationally extremely expensive. We disc...

متن کامل

Estimation of parameters in incomplete data models defined by dynamical systems

Parametric incomplete data models defined by ordinary differential equations (ODEs) are widely used in biostatistics to describe biological processes accurately. Their parameters are estimated on approximate models, whose regression functions are evaluated by a numerical integration method. Accurate and efficient estimations of these parameters are critical issues. This paper proposes parameter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2010