The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation.

نویسندگان

  • S Takada
  • K Hibara
  • T Ishida
  • M Tasaka
چکیده

In higher plants, molecular mechanisms regulating shoot apical meristem (SAM) formation and organ separation are largely unknown. The CUC1 (CUP-SHAPED COTYLEDON1) and CUC2 are functionally redundant genes that are involved in these processes. We cloned the CUC1 gene by a map-based approach, and found that it encodes a NAC-domain protein highly homologous to CUC2. CUC1 mRNA was detected in the presumptive SAM during embryogenesis, and at the boundaries between floral organ primordia. Surprisingly, overexpression of CUC1 was sufficient to induce adventitious shoots on the adaxial surface of cotyledons. Expression analyses in the overexpressor and in loss-of-function mutants suggest that CUC1 acts upstream of the SHOOT MERISTEMLESS gene.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo.

In dicotyledonous plants, the apical region of the embryo shifts from radial to bilateral symmetry as the two cotyledon primordia develop on opposite sides of the shoot meristem. To further elucidate the mechanisms regulating this patterning process, we analyzed functions of two Arabidopsis genes, PIN-FORMED1 (PIN1) and MONOPTEROS (MP), encoding a putative auxin efflux carrier and a transcripti...

متن کامل

A mechanistic link between STM and CUC1 during Arabidopsis development.

The KNOXI transcription factor SHOOT MERISTEMLESS (STM) is required to establish and maintain the Arabidopsis (Arabidopsis thaliana) apical meristem, yet little is known about its direct targets. Using different approaches we demonstrate that the induction of STM causes a significant up-regulation of the organ boundary gene CUP SHAPED COTYLEDON1 (CUC1), which is specific and independent of othe...

متن کامل

Pattern formation during de novo assembly of the Arabidopsis shoot meristem.

Most multicellular organisms have a capacity to regenerate tissue after wounding. Few, however, have the ability to regenerate an entire new body from adult tissue. Induction of new shoot meristems from cultured root explants is a widely used, but poorly understood, process in which apical plant tissues are regenerated from adult somatic tissue through the de novo formation of shoot meristems. ...

متن کامل

Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation.

Overall shoot architecture in higher plants is highly dependent on the activity of embryonic and axillary shoot meristems, which are produced from the basal adaxial boundaries of cotyledons and leaves, respectively. In Arabidopsis thaliana, redundant functions of the CUP-SHAPED COTYLEDON genes CUC1, CUC2, and CUC3 regulate embryonic shoot meristem formation and cotyledon boundary specification....

متن کامل

Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant.

Mutations in CUC1 and CUC2 (for CUP-SHAPED COTYLEDON), which are newly identified genes of Arabidopsis, caused defects in the separation of cotyledons (embryonic organs), sepals, and stamens (floral organs) as well as in the formation of shoot apical meristems. These defects were most apparent in the double mutant. Phenotypes of the mutants suggest a common mechanism for separating adjacent org...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 128 7  شماره 

صفحات  -

تاریخ انتشار 2001