Neural control of blood pressure: focusing on capsaicin-sensitive sensory nerves.
نویسندگان
چکیده
Hypertension is a major risk factor leading to devastating cardiovascular events such as myocardial infarction, stroke, heart failure, and renal failure. Despite intensive research in this area, mechanisms underlying essential hypertension remain to be defined. Accumulating evidence indicates that neural components including both sympathetic and sensory nerves innervating the cardiovascular and renal tissues play a key role in regulating water and sodium homeostasis and blood pressure, and that abnormalities in these nervous systems contribute to increased salt sensitivity and development of hypertension. In contrast to relatively well-defined sympathetic nervous system, the role of sensory nerves in the control of cardiovascular homeostasis is largely unknown. Data from our laboratory show that degeneration of capsaicin-sensitive sensory nerves renders a rat salt sensitive in terms of blood pressure regulation. Evidence is also available indicating that sensory nerves, in interacting with other neurohormonal systems including the sympathetic nervous system, the renin-angiotensin aldosterone system, the endothelin system, and superoxide, regulate cardiovascular and renal function in such that they play a counter-balancing role in preventing salt-induced increases in blood pressure under pathophysiological conditions. Altered activity of the sensory nervous system, a condition existed in both genetic and experimental models of hypertension, contributes to the development of hypertension. This article focuses on reviewing the current knowledge regarding the possible role of sensory nerves in regulating blood pressure homeostasis as well as the function and regulation of novel molecules expressed in sensory nerves.
منابع مشابه
Degeneration of capsaicin-sensitive sensory nerves leads to increased salt sensitivity through enhancement of sympathoexcitatory response.
We have previously shown that neonatal degeneration of capsaicin-sensitive sensory nerves renders a rat responsive to a salt load with an increase in blood pressure and a decrease in natriuretic response. To test the hypothesis that the enhanced sympathoexcitatory response to a high salt intake contributes to the development of hypertension in this model, newborn Wistar rats were given 50 mg/kg...
متن کاملAntihypertensive mechanisms underlying a novel salt-sensitive hypertensive model induced by sensory denervation.
A novel model of hypertension recently developed in our laboratory shows that neonatal degeneration of capsaicin-sensitive sensory nerves renders a rat responsive to a salt load with a significant rise in blood pressure. To determine the role of the renin-angiotensin system and the sympathetic nervous system in the development of hypertension in this model, newborn Wistar rats were given capsai...
متن کاملCapsaicin-sensitive adrenal sensory fibers participate in compensatory adrenal growth in rats.
Compensatory adrenal growth, in which one gland undergoes hyperplasia after removal of the other, is mediated by a neural reflex. In the present studies, a method employing capsaicin to selectively remove adrenal sensory fibers was developed and applied to determine whether adrenal capsaicin-sensitive fibers participate in compensatory adrenal growth. The splanchnic nerves of anesthetized male ...
متن کاملAblation of capsaicin-sensitive afferent nerves affects insulin response during an intravenous glucose tolerance test.
We investigated the role of sensory nerves in glucose tolerance in conscious Wistar rats neonatally treated with neurotoxin capsaicin or vehicle. Intravenous glucose tolerance tests (IVGTT, 150, 300 and 450 mg in 30 min) were performed to measure glucose tolerance, and glucose, insulin and glucagon levels were measured. Higher glucose concentration resulted in a greater insulin response in both...
متن کاملRole of capsaicin-sensitive nerve fibers in uterine contractility in the rat.
The possible participation of capsaicin-sensitive sensory nerves in the modulation of neurogenic contractions was studied in nonpregnant and term pregnant rat uteri. Neurogenic contractions were elicited by electric field stimulation (40 V, 1-70 Hz, 0.6 msec) in intact uteri and uteri that were previously exposed to capsaicin in vitro. In capsaicin pretreated preparations obtained both from non...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular & hematological disorders drug targets
دوره 7 1 شماره
صفحات -
تاریخ انتشار 2007