A functional assay for mutations in tumor suppressor genes caused by mismatch repair deficiency.
نویسندگان
چکیده
The coding sequences of multiple human tumor suppressor genes include microsatellite sequences that are prone to mutations. Saccharomyces cerevisiae strains deficient in DNA mismatch repair (MMR) can be used to determine de novo mutation rates of these human tumor suppressor genes as well as any other gene sequence. Microsatellites in human TGFBR2, PTEN and APC genes were placed in yeast vectors and analyzed in isogenic yeast strains that were wild-type or deletion mutants for MSH2 or MLH1. In MMR-deficient strains, the vector containing the (A)(10) microsatellite sequence of TGFBR2 had a mutation rate (mutations/cell division) of 1.4 x 10(-4), compared to a mutation rate of 1.7 x 10(-6) in the wild-type strain. In MMR-deficient strains, mutation rates in PTEN and APC were also elevated above background levels. PTEN mutation rates were higher in both msh2 (4.4 x 10-5) and mlh1 strains (2.3 x 10-5). APC mutation rates in the msh2 strain (2.4 x 10-6) and the mlh1 strain (1.7 x 10-6) were also significantly, but less dramatically, elevated over background. Mutations selected for in the yeast screen were identical to those previously observed in human tumor samples with microsatellite instability (MSI). This functional assay has applicability in providing quantitative data about microsatellite mutation rates caused by MMR deficiency in any human tumor suppressor gene sequence. It can also be applied as a genetic screen to identify new genes that are vulnerable to such microsatellite mutations and thus may be involved in the neoplastic development of tumors with MSI.
منابع مشابه
سه موتاسیون ژرم لاین جدید در ژن MLH1 در بیماران مبتلا به سرطان کولورکتال ارثی
Abstract Background: Hereditary non-polyposis colorectal cancer is the most common cause of early onset of hereditary colorectal cancer. In the majority of Hereditary non-polyposis colorectal cancer families, microsatellite instability and germline mutation in one of the DNA mismatch repair genes in clouding MSH2, MLH1, MSH6 and PMS2 are found. The Objective of this study was to determine th...
متن کاملMSH2 deficiency contributes to accelerated APC-mediated intestinal tumorigenesis.
Accelerated intestinal tumorigenesis is probable in hereditary nonpolyposis colorectal cancer, a condition associated with germ line DNA mismatch repair (MMR) gene defects, and is believed to be caused by rapid accumulation of replication errors in critical genes, such as the APC (adenomatous polyposis coli) tumor suppressor gene. To study the potential contribution of MMR genes to accelerated ...
متن کاملFHIT (fragile histidine triad)
Fhit protein is a tumor suppressor with reduced or no expression in many types of cancer. Fhit expression is more frequently lost in cancers of individuals with familial mutations causing deficiency in DNA repair genes such as BRCA1 and BRCA2 and MSH2. In vitro Fhit acts as a hydrolase that cleaves diadenosine triphosphate (Ap3A) to ADP and AMP. The Fhit-Ap3A enzyme-substrate complex appears to...
متن کاملMolecular Analysis of Microsatellite Instability in Hereditary Non Polyposis Colon Carcinoma Patients from North-East Iran
Background and Objectives: Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant cancer predisposition syndrome caused by germ-line mutations in DNA mismatch repair genes. Tumors arising as a result of these mutations display instability in a sequence area known as microsatellites. Studies have shown that some Bethesda markers (BAT25, BAT26) are more efficient than other...
متن کاملApoptosis induced by overexpression of hMSH2 or hMLH1.
Mutations of the mismatch repair genes hMSH2 and hMLH1 have been found in a high proportion of individuals with hereditary nonpolyposis colon cancer (HNPCC), establishing the link between mismatch repair and cancer. Tumor cell lines that are deficient in mismatch repair develop a mutator phenotype that appears to drive the accumulation of mutations required for tumor development. However, mutat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 10 24 شماره
صفحات -
تاریخ انتشار 2001