On global location-domination in bipartite graphs
نویسندگان
چکیده
A dominating set S of a graph G is called locating-dominating, LD-set for short, if every vertex v not in S is uniquely determined by the set of neighbors of v belonging to S. Locatingdominating sets of minimum cardinality are called LD-codes and the cardinality of an LD-code is the location-domination number λ(G). An LD-set S of a graph G is global if it is an LD-set of both G and its complement G. The global location-domination number λg(G) is the minimum cardinality of a global LD-set of G. For any LD-set S of a given graph G, the so-called S-associated graph G is introduced. This edge-labeled bipartite graph turns out to be very helpful to approach the study of LD-sets in graphs, particularly when G is bipartite. This paper is mainly devoted to the study of relationships between global LD-sets, LD-codes and the location-domination number in a graph G and its complement G, when G is bipartite.
منابع مشابه
LD-graphs and global location-domination in bipartite graphs
A dominating set S of a graph G is a locating-dominating-set, LD-set for short, if every vertex v not in S is uniquely determined by the set of neighbors of v belonging to S. Locating-dominating sets of minimum cardinality are called LDcodes and the cardinality of an LD-code is the location-domination number, λ(G). An LD-set S of a graph G is global if it is an LD-set for both G and its complem...
متن کاملCoverings, matchings and paired domination in fuzzy graphs using strong arcs
The concepts of covering and matching in fuzzy graphs using strong arcs are introduced and obtained the relationship between them analogous to Gallai’s results in graphs. The notion of paired domination in fuzzy graphs using strong arcs is also studied. The strong paired domination number γspr of complete fuzzy graph and complete bipartite fuzzy graph is determined and obtained bounds for the s...
متن کاملLD-graphs and global location-domination
A dominating set S of a graph G is a locating-dominating-set, LD-set for short, if every vertex v not in S is uniquely determined by the set of neighbors of v belonging to S. Locating-dominating sets of minimum cardinality are called LDcodes and the cardinality of an LD-code is the location-domination number, λ(G). An LD-set S of a graph G is global if it is an LD-set for both G and its complem...
متن کاملIndependent domination in directed graphs
In this paper we initialize the study of independent domination in directed graphs. We show that an independent dominating set of an orientation of a graph is also an independent dominating set of the underlying graph, but that the converse is not true in general. We then prove existence and uniqueness theorems for several classes of digraphs including orientations of complete graphs, paths, tr...
متن کاملThe p-median and p-center Problems on Bipartite Graphs
Let $G$ be a bipartite graph. In this paper we consider the two kind of location problems namely $p$-center and $p$-median problems on bipartite graphs. The $p$-center and $p$-median problems asks to find a subset of vertices of cardinality $p$, so that respectively the maximum and sum of the distances from this set to all other vertices in $G$ is minimized. For each case we present some proper...
متن کامل