Ascent of Finiteness of Flat Dimension

نویسنده

  • TAKUMI MURAYAMA
چکیده

The main focus of this talk is to prove ascent of finiteness of flat dimension through local homomorphisms. Descent is known classically, e.g., it is in Cartan–Eilenberg’s book on homological algebra, but the corresponding ascent property is surprising because of the need to use derived categories. We present a short proof of ascent due to Dwyer–Greenlees–Iyengar, and discuss the main ingredient of the proof, which is the classification due to Hopkins and Neeman of thick subcategories of the category of perfect complexes over a commutative noetherian ring R. At the end, we discuss other directions these ideas of Hopkins and Neeman lead, in particular Balmer’s result that says one can reconstruct a scheme from its derived category. The main sources for this talk are [Iye06] and [DGI06]. For basic results on unbounded complexes of modules at a (hopefully) accessible level, and for more thorough proofs for many of the preliminary results we do not prove here, we point the reader to [BN93], and a previous note by the author [Mur15].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Flat and Projective Dimension

known as the left big finitistic projective dimension of A, is finite. Here pdM denotes the projective dimension of M . Unfortunately, this number is not known to be finite even if A is a finite dimensional algebra over a field, where, indeed, its finiteness is a celebrated conjecture. On the other hand, for such an algebra, finite flat certainly implies finite projective dimension, simply beca...

متن کامل

UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES

Let $R$ be a commutative Noetherian ring with non-zero identity and $fa$ an ideal of $R$. Let $M$ be a finite $R$--module of finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(M,N)$ in certain Serre subcategories of the category of modules from upper bounds. We define and study the properti...

متن کامل

On a Conformal Gap and Finiteness Theorem for a Class of Four Manifolds

In this paper we develop a bubble tree structure for a degenerating class of Riemannian metrics satisfying some global conformal bounds on compact manifolds of dimension 4. Applying the bubble tree structure, we establish a gap theorem, a finiteness theorem for diffeomorphism type for this class, and make a comparison of the solutions of the σk equations on a degenerating family of Bach flat me...

متن کامل

Gorenstein flat and Gorenstein injective dimensions of simple modules

Let R be a right GF-closed ring with finite left and right Gorenstein global dimension. We prove that if I is an ideal of R such that R/I is a semi-simple ring, then the Gorensntein flat dimensnion of R/I as a right R-module and the Gorensntein injective dimensnnion of R/I as a left R-module are identical. In particular, we show that for a simple module S over a commutative Gorensntein ring R, ...

متن کامل

On Finiteness of Kleinian Groups in General Dimension

In this paper we provide a criteria for geometric finiteness of Kleinian groups in general dimension. We formulate the concept of conformal finiteness for Kleinian groups in space of dimension higher than two, which generalizes the notion of analytic finiteness in dimension two. Then we extend the argument in the paper of Bishop and Jones to show that conformal finiteness implies geometric fini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016