Practical iterative image reconstruction in digital breast tomosynthesis by non-convex TpV optimization

نویسندگان

  • Emil Y Sidky
  • Ingrid Reiser
  • Robert M. Nishikawa
  • Xiaochuan Pan
  • Rick Chartrand
  • Daniel B Kopans
  • Richard H Moore
چکیده

Digital breast tomosynthesis (DBT) is a rapidly developing imaging modality that gives some tomographic information for breast cancer screening. The effectiveness of standard mammography can be limited by the presence of overlapping structures in the breast. A DBT scan, consisting of a limited number of views covering a limited arc projecting the breast onto a fixed flat-panel detector, involves only a small modification of digital mammography, yet DBT yields breast image slices with reduced interference from overlapping breast tissues. We have recently developed an iterative image reconstruction algorithm for DBT based on image total variation (TV) minimization that improves on EM in that the resulting images have fewer artifacts and there is no need for additional regularization. In this abstract, we present the total p-norm variation (TpV) image reconstruction algorithm. TpV has the advantages of our previous TV algorithm, while improving substantially on the efficiency. Results for the TpV on clinical data are shown and compared with EM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced imaging of microcalcifications in digital breast tomosynthesis through improved image-reconstruction algorithms.

PURPOSE The authors develop a practical, iterative algorithm for image-reconstruction in undersampled tomographic systems, such as digital breast tomosynthesis (DBT). METHODS The algorithm controls image regularity by minimizing the image total p variation (TpV), a function that reduces to the total variation when p = 1.0 or the image roughness when p = 2.0. Constraints on the image, such as ...

متن کامل

Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU

Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...

متن کامل

Digital Breast Tomosynthesis Reconstruction using Spatially Weighted Non-convex Regularization

Regularization is an effective strategy for reducing noise in tomographic reconstruction. This paper proposes a spatially weighted non-convex (SWNC) regularization method for digital breast tomosynthesis (DBT) image reconstruction. With a non-convex cost function, this method can suppress noise without blurring microcalcifications (MC) and spiculations of masses. To minimize the non-convex cost...

متن کامل

Digital Breast Tomosynthesis Reconstruction with Detector Blur and Correlated Noise

This paper describes a new reconstruction method for digital breast tomosynthesis (DBT). The new method incorporates detector blur into the forward model. The detector blur introduces correlation in the measurement noise. We formulate it as a regularized quadratic optimization problem with data-fit term that accounts for the non-diagonal noise covariance matrix. By making a few assumptions base...

متن کامل

Statistical iterative reconstruction to improve image quality for digital breast tomosynthesis.

PURPOSE Digital breast tomosynthesis (DBT) is a novel modality with the potential to improve early detection of breast cancer by providing three-dimensional (3D) imaging with a low radiation dose. 3D image reconstruction presents some challenges: cone-beam and flat-panel geometry, and highly incomplete sampling. A promising means of overcome these challenges is statistical iterative reconstruct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008