Phototriggered cargo release from virus-like assemblies.

نویسندگان

  • Melanie Brasch
  • Ilja K Voets
  • Melissa S T Koay
  • Jeroen J L M Cornelissen
چکیده

There has been tremendous progress towards the development of responsive polymers that are programmed to respond to an external stimulus such as light, pH and temperature. The unique combination of molecular packaging followed by slow, controlled release of molecular cargo is of particular importance for self-healing materials and the controlled release of drugs. While much focus and progress remains centred around synthetic carriers, viruses and virus-like particles can be considered ideal cargo carriers as they are intrinsically designed to package, protect and deliver nucleic acid cargo to host cells. Here, we report the encapsulation of a stimuli-responsive self-immolative polymer within virus-like assemblies of Cowpea Chlorotic Mottle Virus. Upon photo-irradiation, the self-immolative polymer undergoes a head-to-tail depolymerization into its monomeric subunits, resulting in the slow release of the molecular cargo. We propose that the liberated monomers are small enough to diffuse through the pores of the virus capsid shell and offer an alternative strategy for the controlled loading and unloading of the molecular cargo using viruses as cargo carriers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Defining the Stoichiometry and Cargo Load of Viral and Bacterial Nanoparticles by Orbitrap Mass Spectrometry

Accurate mass analysis can provide useful information on the stoichiometry and composition of protein-based particles, such as virus-like assemblies. For applications in nanotechnology and medicine, such nanoparticles are loaded with foreign cargos, making accurate mass information essential to define the cargo load. Here, we describe modifications to an Orbitrap mass spectrometer that enable h...

متن کامل

Truncated Hepatitis B virus like nanoparticles: A novel drug delivery platform for cancer therapy

Nowadays, Nano-sized drug delivery systems have been studied extensively for theirpotential in cancer therapy. Various drug nanocarriers are being developed including liposomes, micelles, and Virus like nanoparticles (VLNPs). VLNPs offer many advantages for developing smart drug delivery systems due to their precise and repeated structures and relatively large cargo capacities. Truncated ...

متن کامل

Re-design of Downstream Processing Techniques for Nanoparticulate Bioproducts

There has been much interest generated in the recovery of nanoparticulate (nanoparticle) bioproducts(Second generation of biotechnological products) such as plasmid DNA and viruses as putative gene therapyvectors, macromolecular assemblies as drug delivery vehicles and virus-like particles as vaccine components.Such product must be manufactured in advanced stages of purity, ma...

متن کامل

Hepatitis virus capsid polymorph stability depends on encapsulated cargo size.

Protein cages providing a controlled environment to encapsulated cargo are a ubiquitous presence in any biological system. Well-known examples are capsids, the regular protein shells of viruses, which protect and deliver the viral genome. Since some virus capsids can be loaded with nongenomic cargoes, they are interesting for a variety of applications ranging from biomedical delivery to energy ...

متن کامل

Structure of cellular ESCRT-III spirals and their relationship to HIV budding

The ESCRT machinery along with the AAA+ ATPase Vps4 drive membrane scission for trafficking into multivesicular bodies in the endocytic pathway and for the topologically related processes of viral budding and cytokinesis, but how they accomplish this remains unclear. Using deep-etch electron microscopy, we find that endogenous ESCRT-III filaments stabilized by depleting cells of Vps4 create uni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Faraday discussions

دوره 166  شماره 

صفحات  -

تاریخ انتشار 2013