An iterated `1 Algorithm for Non-smooth Non-convex Optimization in Computer Vision

نویسندگان

  • Peter Ochs
  • Alexey Dosovitskiy
  • Thomas Brox
  • Thomas Pock
چکیده

Natural image statistics indicate that we should use nonconvex norms for most regularization tasks in image processing and computer vision. Still, they are rarely used in practice due to the challenge to optimize them. Recently, iteratively reweighed `1 minimization has been proposed as a way to tackle a class of non-convex functions by solving a sequence of convex `2-`1 problems. Here we extend the problem class to linearly constrained optimization of a Lipschitz continuous function, which is the sum of a convex function and a function being concave and increasing on the non-negative orthant (possibly non-convex and nonconcave on the whole space). This allows to apply the algorithm to many computer vision tasks. We show the effect of non-convex regularizers on image denoising, deconvolution, optical flow, and depth map fusion. Non-convexity is particularly interesting in combination with total generalized variation and learned image priors. Efficient optimization is made possible by some important properties that are shown to hold.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Iteratively Reweighted Algorithms for Nonsmooth Nonconvex Optimization in Computer Vision

Natural image statistics indicate that we should use non-convex norms for most regularization tasks in image processing and computer vision. Still, they are rarely used in practice due to the challenge of optimization. Recently, iteratively reweighed `1 minimization (IRL1) has been proposed as a way to tackle a class of non-convex functions by solving a sequence of convex `2-`1 problems. We ext...

متن کامل

Algorithm for finding the largest inscribed rectangle in polygon

In many industrial and non-industrial applications, it is necessary to identify the largest inscribed rectangle in a certain shape. The problem is studied for convex and non-convex polygons. Another criterion is the direction of the rectangle: axis aligned or general. In this paper a heuristic algorithm is presented for finding the largest axis aligned inscribed rectangle in a general polygon. ...

متن کامل

An Intelligent Approach Based on Meta-Heuristic Algorithm for Non-Convex Economic Dispatch

One of the significant strategies of the power systems is Economic Dispatch (ED) problem, which is defined as the optimal generation of power units to produce energy at the lowest cost by fulfilling the demand within several limits. The undeniable impacts of ramp rate limits, valve loading, prohibited operating zone, spinning reserve and multi-fuel option on the economic dispatch of practical p...

متن کامل

Particle Swarm Optimization for Hydraulic Analysis of Water Distribution Systems

The analysis of flow in water-distribution networks with several pumps by the Content Model may be turned into a non-convex optimization uncertain problem with multiple solutions. Newton-based methods such as GGA are not able to capture a global optimum in these situations. On the other hand, evolutionary methods designed to use the population of individuals may find a global solution even for ...

متن کامل

Linear Objective Function Optimization with the Max-product Fuzzy Relation Inequality Constraints

In this paper, an optimization problem with a linear objective function subject to a consistent finite system of fuzzy relation inequalities using the max-product composition is studied. Since its feasible domain is non-convex, traditional linear programming methods cannot be applied to solve it. We study this problem and capture some special characteristics of its feasible domain and optimal s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013