Transparency, Geomorphology and Mixing Regime Explain Variability in Trends in Lake Temperature and Stratification Across Northeastern North America (1975-2014)

نویسندگان

  • David C. Richardson
  • Stephanie J. Melles
  • Rachel M. Pilla
  • Amy L. Hetherington
  • Lesley B. Knoll
  • Craig E. Williamson
  • Benjamin M. Kraemer
  • James R. Jackson
  • Elizabeth C. Long
  • Karen Moore
  • Lars G. Rudstam
  • James A. Rusak
  • Jasmine E. Saros
  • Sapna Sharma
  • Kristin E. Strock
  • Kathleen C. Weathers
  • Courtney R. Wigdahl-Perry
چکیده

Lake surface water temperatures are warming worldwide, raising concerns about the future integrity of valuable lake ecosystem services. In contrast to surface water temperatures, we know far less about what is happening to water temperature beneath the surface, where most organisms live. Moreover, we know little about which characteristics make lakes more or less sensitive to climate change and other environmental stressors. We examined changes in lake thermal structure for 231 lakes across northeastern North America (NENA), a region with an exceptionally high density of lakes. We determined how lake thermal structure has changed in recent decades (1975–2012) and assessed which lake characteristics are related to changes in lake thermal structure. In general, NENA lakes had increasing near-surface temperatures and thermal stratification strength. On average, changes in Water 2017, 9, 442; doi:10.3390/w9060442 www.mdpi.com/journal/water Water 2017, 9, 442 2 of 22 deepwater temperatures for the 231 lakes were not significantly different than zero, but individually, half of the lakes experienced warming and half cooling deepwater temperature through time. More transparent lakes (Secchi transparency >5 m) tended to have higher near-surface warming and greater increases in strength of thermal stratification than less transparent lakes. Whole-lake warming was greatest in polymictic lakes, where frequent summer mixing distributed heat throughout the water column. Lakes often function as important sentinels of climate change, but lake characteristics within and across regions modify the magnitude of the signal with important implications for lake biology, ecology and chemistry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of hydroclimatic trends in the Atrak River basin, North Khorasan, Iran (1975 – 2008)

Hydrologic regime is highly dependent on climate change, as hydrologic cycle components are directly influenced by climatic conditions. This paper analyzes the impacts of climate change on the hydrologic regime of the Atrak River basin in the northeast of Iran. It drains to the Caspian Sea. The data collected at 11 hydrometeorological stations were examined to detect trends in hydroclimatologic...

متن کامل

Planktonic events may cause polymictic-dimictic regime shifts in temperate lakes.

Water transparency affects the thermal structure of lakes, and within certain lake depth ranges, it can determine whether a lake mixes regularly (polymictic regime) or stratifies continuously (dimictic regime) from spring through summer. Phytoplankton biomass can influence transparency but the effect of its seasonal pattern on stratification is unknown. Therefore we analysed long term field dat...

متن کامل

Trends of Extreme Temperature Over the Lake Urmia Basin, Iran, During 1987-2014

The variability of temperature extremes has been the focus of attention during the past several decades and had a great influence on the hydrologic cycle. A long-term, high-quality daily maximum (TX) and minimum temperature (TN) of seven stations was used to determine the spatial and temporal characteristics of extreme temperature events in Lake Urmia Basin in Iran during 1987 to 2014. The RCli...

متن کامل

Ecological consequences of long-term browning in lakes

Increases in terrestrially-derived dissolved organic matter (DOM) have led to the browning of inland waters across regions of northeastern North America and Europe. Short-term experimental and comparative studies highlight the important ecological consequences of browning. These range from transparency-induced increases in thermal stratification and oxygen (O2) depletion to changes in pelagic f...

متن کامل

Lakes as sensors in the landscape: Optical metrics as scalable sentinel responses to climate change

As the lowest point in the surrounding landscape, lakes act as sensors in the landscape to provide insights into the response of both terrestrial and aquatic ecosystems to climate change. Here a novel suite of climate forcing optical indices (CFOI) from lakes across North America is found to respond to changes in air temperature, precipitation, and solar radiation at timescales ranging from a s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017